Librarian View
Last updated in SearchWorks on November 25, 2023 3:51am
LEADER 06007cam a2200637Mi 4500
001
a14729127
003
SIRSI
006
m o d
007
cr cnu---unuuu
008
191221s2019 enk o 000 0 eng d
035
a| (Sirsi) a14729127
040
a| EBLCP
b| eng
e| pn
c| EBLCP
d| TEFOD
d| EBLCP
d| TEFOD
d| OCLCF
d| OCLCQ
d| N$T
d| NLW
d| OCLCO
d| NZAUC
d| OCLCQ
020
a| 1838556346
020
a| 9781838556341
q| (electronic bk.)
035
a| (OCoLC)1129196943
037
a| 72EE5937-3927-4CA9-8C56-16FD64DE1D71
b| OverDrive, Inc.
n| http://www.overdrive.com
050
4
a| QA76.9.A25
082
0
4
a| 005.8
2| 23
049
a| MAIN
100
1
a| Tsukerman, Emmanuel.
245
1
0
a| Machine Learning for Cybersecurity Cookbook :
b| Over 80 Recipes on How to Implement Machine Learning Algorithms for Building Security Systems Using Python.
260
a| Birmingham :
b| Packt Publishing, Limited,
c| 2019.
300
a| 1 online resource (338 pages)
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
588
0
a| Print version record.
505
0
a| Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Machine Learning for Cybersecurity -- Technical requirements -- Train-test-splitting your data -- Getting ready -- How to do it ... -- How it works ... -- Standardizing your data -- Getting ready -- How to do it ... -- How it works ... -- Summarizing large data using principal component analysis -- Getting ready -- How to do it ... -- How it works ... -- Generating text using Markov chains -- Getting ready -- How to do it ... -- How it works ...
505
8
a| Performing clustering using scikit-learn -- Getting ready -- How to do it ... -- How it works ... -- Training an XGBoost classifier -- Getting ready -- How to do it ... -- How it works ... -- Analyzing time series using statsmodels -- Getting ready -- How to do it ... -- How it works ... -- Anomaly detection with Isolation Forest -- Getting ready -- How to do it ... -- How it works ... -- Natural language processing using a hashing vectorizer and tf-idf with scikit-learn -- Getting ready -- How to do it ... -- How it works ... -- Hyperparameter tuning with scikit-optimize -- Getting ready -- How to do it ...
505
8
a| How it works ... -- Chapter 2: Machine Learning-Based Malware Detection -- Technical requirements -- Malware static analysis -- Computing the hash of a sample -- Getting ready -- How to do it ... -- How it works ... -- YARA -- Getting ready -- How to do it ... -- How it works ... -- Examining the PE header -- Getting ready -- How to do it ... -- How it works ... -- Featurizing the PE header -- Getting ready -- How to do it ... -- How it works ... -- Malware dynamic analysis -- Getting ready -- How to do it ... -- How it works ... -- Using machine learning to detect the file type
505
8
a| Scraping GitHub for files of a specific type -- Getting ready -- How to do it ... -- How it works ... -- Classifying files by type -- Getting ready -- How to do it ... -- How it works ... -- Measuring the similarity between two strings -- Getting ready -- How to do it ... -- How it works ... -- Measuring the similarity between two files -- Getting ready -- How to do it ... -- How it works ... -- Extracting N-grams -- Getting ready -- How to do it ... -- How it works ... -- Selecting the best N-grams -- Getting ready -- How to do it ... -- How it works ... -- Building a static malware detector -- Getting ready
505
8
a| How to do it ... -- How it works ... -- Tackling class imbalance -- Getting ready -- How to do it ... -- How it works ... -- Handling type I and type II errors -- Getting ready -- How to do it ... -- How it works ... -- Chapter 3: Advanced Malware Detection -- Technical requirements -- Detecting obfuscated JavaScript -- Getting ready -- How to do it ... -- How it works ... -- Featurizing PDF files -- Getting ready -- How to do it ... -- How it works ... -- Extracting N-grams quickly using the hash-gram algorithm -- Getting ready -- How to do it ... -- How it works ... -- See also -- Building a dynamic malware classifier
500
a| Getting ready
520
a| This book helps data scientists and cybersecurity experts on implementing the latest AI techniques in cybersecurity. Concrete and clear steps for implementing ML security systems are provided, saving you months in research and development. By the end of this book, you will be able to build defensive systems to curb cybersecurity threats.
650
0
a| Computer security.
650
0
a| Machine learning.
650
2
a| Computer Security
650
6
a| Sécurité informatique.
650
6
a| Apprentissage automatique.
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Expert systems / knowledge-based systems.
2| bicssc
650
7
a| Network security.
2| bicssc
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Computers
x| Expert Systems.
2| bisacsh
650
7
a| Computers
x| Networking
x| Security.
2| bisacsh
650
7
a| Computer security.
2| fast
0| (OCoLC)fst00872484
650
7
a| Machine learning.
2| fast
0| (OCoLC)fst01004795
776
0
8
i| Print version:
a| Tsukerman, Emmanuel.
t| Machine Learning for Cybersecurity Cookbook : Over 80 Recipes on How to Implement Machine Learning Algorithms for Building Security Systems Using Python.
d| Birmingham : Packt Publishing, Limited, ©2019
z| 9781789614671
856
4
0
z| Available to Stanford-affiliated users.
u| http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2318877
x| WMS
y| EBSCO Academic Comprehensive Collection
x| Provider: EBSCO
x| subscribed
x| eLoaderURL
x| uc4
x| ucon1129196943
994
a| 92
b| STF
915
a| NO EXPORT
b| AUTHORITY VENDOR
d| 20230506
596
a| 22
035
a| (Sirsi) ucon1129196943
999
f
f
i| 7f83dd6f-7552-551a-a437-28111a90b221
s| ab8308c0-9a33-5f27-891d-9bb34d418fc2
Holdings JSON
{ "holdings": [ { "id": "6a77b86e-eb3a-538d-bc38-c9f449b1994a", "hrid": "ah14729127_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T22:03:05.439Z", "updatedDate": "2023-08-21T22:03:05.439Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "7f83dd6f-7552-551a-a437-28111a90b221", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "7f83dd6f-7552-551a-a437-28111a90b221", "hrid": "a14729127", "notes": [ { "note": "Print version record", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Cover -- Title Page -- Copyright and Credits -- About Packt -- Contributors -- Table of Contents -- Preface -- Chapter 1: Machine Learning for Cybersecurity -- Technical requirements -- Train-test-splitting your data -- Getting ready -- How to do it ... -- How it works ... -- Standardizing your data -- Getting ready -- How to do it ... -- How it works ... -- Summarizing large data using principal component analysis -- Getting ready -- How to do it ... -- How it works ... -- Generating text using Markov chains -- Getting ready -- How to do it ... -- How it works ", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "Performing clustering using scikit-learn -- Getting ready -- How to do it ... -- How it works ... -- Training an XGBoost classifier -- Getting ready -- How to do it ... -- How it works ... -- Analyzing time series using statsmodels -- Getting ready -- How to do it ... -- How it works ... -- Anomaly detection with Isolation Forest -- Getting ready -- How to do it ... -- How it works ... -- Natural language processing using a hashing vectorizer and tf-idf with scikit-learn -- Getting ready -- How to do it ... -- How it works ... -- Hyperparameter tuning with scikit-optimize -- Getting ready -- How to do it ", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "How it works ... -- Chapter 2: Machine Learning-Based Malware Detection -- Technical requirements -- Malware static analysis -- Computing the hash of a sample -- Getting ready -- How to do it ... -- How it works ... -- YARA -- Getting ready -- How to do it ... -- How it works ... -- Examining the PE header -- Getting ready -- How to do it ... -- How it works ... -- Featurizing the PE header -- Getting ready -- How to do it ... -- How it works ... -- Malware dynamic analysis -- Getting ready -- How to do it ... -- How it works ... -- Using machine learning to detect the file type", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "Scraping GitHub for files of a specific type -- Getting ready -- How to do it ... -- How it works ... -- Classifying files by type -- Getting ready -- How to do it ... -- How it works ... -- Measuring the similarity between two strings -- Getting ready -- How to do it ... -- How it works ... -- Measuring the similarity between two files -- Getting ready -- How to do it ... -- How it works ... -- Extracting N-grams -- Getting ready -- How to do it ... -- How it works ... -- Selecting the best N-grams -- Getting ready -- How to do it ... -- How it works ... -- Building a static malware detector -- Getting ready", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "How to do it ... -- How it works ... -- Tackling class imbalance -- Getting ready -- How to do it ... -- How it works ... -- Handling type I and type II errors -- Getting ready -- How to do it ... -- How it works ... -- Chapter 3: Advanced Malware Detection -- Technical requirements -- Detecting obfuscated JavaScript -- Getting ready -- How to do it ... -- How it works ... -- Featurizing PDF files -- Getting ready -- How to do it ... -- How it works ... -- Extracting N-grams quickly using the hash-gram algorithm -- Getting ready -- How to do it ... -- How it works ... -- See also -- Building a dynamic malware classifier", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "Getting ready", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "This book helps data scientists and cybersecurity experts on implementing the latest AI techniques in cybersecurity. Concrete and clear steps for implementing ML security systems are provided, saving you months in research and development. By the end of this book, you will be able to build defensive systems to curb cybersecurity threats", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Machine Learning for Cybersecurity Cookbook : Over 80 Recipes on How to Implement Machine Learning Algorithms for Building Security Systems Using Python.", "series": [ ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T22:01:06.092Z", "updatedDate": "2023-08-21T22:01:06.092Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Computer security", "Machine learning", "Computer Security", "Sécurité informatique", "Apprentissage automatique", "Artificial intelligence", "Expert systems / knowledge-based systems", "Network security", "Computers Intelligence (AI) & Semantics", "Computers Expert Systems", "Computers Networking Security" ], "languages": [ "eng" ], "indexTitle": "Machine learning for cybersecurity cookbook : over 80 recipes on how to implement machine learning algorithms for building security systems using python.", "identifiers": [ { "value": "(Sirsi) a14729127", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "1838556346", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9781838556341 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "(OCoLC)1129196943", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(Sirsi) ucon1129196943", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "place": "Birmingham", "publisher": "Packt Publishing, Limited", "dateOfPublication": "2019" } ], "contributors": [ { "name": "Tsukerman, Emmanuel", "primary": true, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2023-05-06", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "QA76.9.A25", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "005.8", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2318877", "name": "Resource", "linkText": "EBSCO Academic Comprehensive Collection", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2019 }, "statusUpdatedDate": "2023-08-21T22:01:05.987+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (338 pages)" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }