Librarian View
Last updated in SearchWorks on December 3, 2023 9:49pm
LEADER 08129cam a2200793 i 4500
001
a14386016
003
SIRSI
006
m o d
007
cr unu||||||||
008
201104s2020 enka ob 001 0 eng d
035
a| (Sirsi) a14386016
040
a| UMI
b| eng
e| rda
e| pn
c| UMI
d| UKAHL
d| N$T
d| YDX
d| EBLCP
d| NLW
d| OCLCO
d| OCLCF
d| UKMGB
d| MEAUC
d| S2H
d| OCLCO
d| OCLCQ
015
a| GBC0H8205
2| bnb
016
7
a| 019881584
2| Uk
019
a| 1182853866
a| 1189766846
020
a| 9781839216787
020
a| 1839216786
020
z| 9781839217715
035
a| (OCoLC)1203113533
z| (OCoLC)1182853866
z| (OCoLC)1189766846
037
a| CL0501000162
b| Safari Books Online
050
4
a| HG104
b| .J26 2020eb
082
0
4
a| 332.10285
2| 23
049
a| MAIN
100
1
a| Jansen, Stefan,
e| author.
245
1
0
a| Machine learning for algorithmic trading :
b| predictive models to extract signals from market and alternative data for systematic trading strategies with Python /
c| Stefan Jansen.
250
a| Second edition.
264
1
a| Birmingham, UK :
b| Packt Publishing,
c| 2020.
300
a| 1 online resource (1 volume) :
b| illustrations
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
588
0
a| Online resource; title from title page (Safari, viewed October 28, 2020).
500
a| Previous edition published: 2018.
504
a| Includes bibliographical references and index.
505
0
a| Table of ContentsMachine Learning for Trading -- From Idea to ExecutionMarket and Fundamental Data -- Sources and TechniquesAlternative Data for Finance -- Categories and Use CasesFinancial Feature Engineering -- How to Research Alpha FactorsPortfolio Optimization and Performance EvaluationThe Machine Learning ProcessLinear Models -- From Risk Factors to Return ForecastsThe ML4T Workflow -- From Model to Strategy BacktestingTime-Series Models for Volatility Forecasts and Statistical ArbitrageBayesian ML -- Dynamic Sharpe Ratios and Pairs Trading(N.B. Please use the Look Inside option to see further chapters).
520
a| This thoroughly revised and expanded second edition demonstrates on over 800 pages how machine learning can add value to algorithmic trading in a practical yet comprehensive way. It has four parts that cover how to work with a diverse set of market, fundamental, and alternative data sources, design ML solutions for real-world trading ...
650
0
a| Finance
x| Data processing.
650
0
a| Finance
x| Statistical methods.
650
0
a| Python (Computer program language)
650
0
a| Machine learning.
650
6
a| Finances
x| Informatique.
650
6
a| Finances
x| Méthodes statistiques.
650
6
a| Python (Langage de programmation)
650
6
a| Apprentissage automatique.
650
7
a| Data capture & analysis.
2| bicssc
650
7
a| Neural networks & fuzzy systems.
2| bicssc
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Computers
x| Data Processing.
2| bisacsh
650
7
a| Computers
x| Neural Networks.
2| bisacsh
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Finance
x| Data processing.
2| fast
0| (OCoLC)fst00924370
650
7
a| Finance
x| Statistical methods.
2| fast
0| (OCoLC)fst00924417
650
7
a| Machine learning.
2| fast
0| (OCoLC)fst01004795
650
7
a| Python (Computer program language)
2| fast
0| (OCoLC)fst01084736
650
7
a| Graphical & digital media applications.
2| thema
650
7
a| Data capture & analysis.
2| thema
650
7
a| Neural networks & fuzzy systems.
2| thema
650
7
a| Computers and IT.
2| ukslc
776
0
8
i| Print version:
a| Jansen, Stefan.
t| Machine Learning for Algorithmic Trading : Predictive Models to Extract Signals from Market and Alternative Data for Systematic Trading Strategies with Python, 2nd Edition.
d| Birmingham : Packt Publishing, Limited, ©2020
z| 9781839217715
856
4
0
z| Available to Stanford-affiliated users.
u| http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2557666
x| WMS
y| EBSCO Academic Comprehensive Collection
x| Provider: EBSCO
x| subscribed
x| eLoaderURL
x| uc4
x| ucon1203113533
994
a| 92
b| STF
915
a| NO EXPORT
b| AUTHORITY VENDOR
d| 20221105
905
0
a| Table of Contents Machine Learning for Trading - From Idea to Execution Market and Fundamental Data - Sources and Techniques Alternative Data for Finance - Categories and Use Cases Financial Feature Engineering - How to Research Alpha Factors Portfolio Optimization and Performance Evaluation The Machine Learning Process Linear Models - From Risk Factors to Return Forecasts The ML4T Workflow - From Model to Strategy Backtesting (N.B. Please use the Look Inside option to see further chapters).
1| Nielsen
x| 9781839217715
x| 20221114
920
b| Leverage machine learning to design and back-test automated trading strategies for real-world markets using pandas, TA-Lib, scikit-learn, LightGBM, SpaCy, Gensim, TensorFlow 2, Zipline, backtrader, Alphalens, and pyfolio. Purchase of the print or Kindle book includes a free eBook in the PDF format. Key Features Design, train, and evaluate machine learning algorithms that underpin automated trading strategies Create a research and strategy development process to apply predictive modeling to trading decisions Leverage NLP and deep learning to extract tradeable signals from market and alternative data Book DescriptionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This revised and expanded second edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This book introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this by using examples ranging from linear models and tree-based ensembles to deep-learning techniques from cutting edge research. This edition shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable an ML model to predict returns from price data for US and international stocks and ETFs. It also shows how to assess the signal content of new features using Alphalens and SHAP values and includes a new appendix with over one hundred alpha factor examples. By the end, you will be proficient in translating ML model predictions into a trading strategy that operates at daily or intraday horizons, and in evaluating its performance. What you will learn Leverage market, fundamental, and alternative text and image data Research and evaluate alpha factors using statistics, Alphalens, and SHAP values Implement machine learning techniques to solve investment and trading problems Backtest and evaluate trading strategies based on machine learning using Zipline and Backtrader Optimize portfolio risk and performance analysis using pandas, NumPy, and pyfolio Create a pairs trading strategy based on cointegration for US equities and ETFs Train a gradient boosting model to predict intraday returns using AlgoSeek's high-quality trades and quotes data Who this book is forIf you are a data analyst, data scientist, Python developer, investment analyst, or portfolio manager interested in getting hands-on machine learning knowledge for trading, this book is for you. This book is for you if you want to learn how to extract value from a diverse set of data sources using machine learning to design your own systematic trading strategies. Some understanding of Python and machine learning techniques is required.
1| Nielsen
x| 9781839217715
x| 20221114
596
a| 22
035
a| (Sirsi) ucon1203113533
999
f
f
i| 4c572dab-7c99-5485-b2bd-908976fc785d
s| 501e1b04-a18f-5798-aeb0-69143e818509
Holdings JSON
{ "holdings": [ { "id": "11becd6d-70d5-5aab-a6f2-2da5292f3c32", "hrid": "ah14386016_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:42:41.553Z", "updatedDate": "2023-08-21T21:42:41.553Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "4c572dab-7c99-5485-b2bd-908976fc785d", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "4c572dab-7c99-5485-b2bd-908976fc785d", "hrid": "a14386016", "notes": [ { "note": "Online resource; title from title page (Safari, viewed October 28, 2020)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Previous edition published: 2018", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "Includes bibliographical references and index", "staffOnly": false, "instanceNoteTypeId": "86b6e817-e1bc-42fb-bab0-70e7547de6c1" }, { "note": "Table of ContentsMachine Learning for Trading -- From Idea to ExecutionMarket and Fundamental Data -- Sources and TechniquesAlternative Data for Finance -- Categories and Use CasesFinancial Feature Engineering -- How to Research Alpha FactorsPortfolio Optimization and Performance EvaluationThe Machine Learning ProcessLinear Models -- From Risk Factors to Return ForecastsThe ML4T Workflow -- From Model to Strategy BacktestingTime-Series Models for Volatility Forecasts and Statistical ArbitrageBayesian ML -- Dynamic Sharpe Ratios and Pairs Trading(N.B. Please use the Look Inside option to see further chapters)", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "This thoroughly revised and expanded second edition demonstrates on over 800 pages how machine learning can add value to algorithmic trading in a practical yet comprehensive way. It has four parts that cover how to work with a diverse set of market, fundamental, and alternative data sources, design ML solutions for real-world trading ", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Machine learning for algorithmic trading : predictive models to extract signals from market and alternative data for systematic trading strategies with Python / Stefan Jansen.", "series": [ ], "source": "MARC", "_version": 1, "editions": [ "Second edition" ], "metadata": { "createdDate": "2023-08-21T21:38:49.608Z", "updatedDate": "2023-08-21T21:38:49.608Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Finance Data processing", "Finance Statistical methods", "Python (Computer program language)", "Machine learning", "Finances Informatique", "Finances Méthodes statistiques", "Python (Langage de programmation)", "Apprentissage automatique", "Data capture & analysis", "Neural networks & fuzzy systems", "Artificial intelligence", "Computers Data Processing", "Computers Neural Networks", "Computers Intelligence (AI) & Semantics", "Graphical & digital media applications", "Computers and IT" ], "languages": [ "eng" ], "indexTitle": "Machine learning for algorithmic trading : predictive models to extract signals from market and alternative data for systematic trading strategies with python", "identifiers": [ { "value": "(Sirsi) a14386016", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9781839216787", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "1839216786", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9781839217715", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "(OCoLC)1203113533", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1182853866", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1189766846", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) ucon1203113533", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Birmingham, UK", "publisher": "Packt Publishing", "dateOfPublication": "2020" } ], "contributors": [ { "name": "Jansen, Stefan", "primary": true, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2022-11-05", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "HG104 .J26 2020eb", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "332.10285", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2557666", "name": "Resource", "linkText": "EBSCO Academic Comprehensive Collection", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2020 }, "statusUpdatedDate": "2023-08-21T21:38:48.698+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (1 volume) : illustrations" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }