Librarian View
Last updated in SearchWorks on December 3, 2023 4:00pm
LEADER 06721cam a2200745 i 4500
001
a14279861
003
SIRSI
006
m o d
007
cr unu||||||||
008
200617s2020 enka o 000 0 eng d
035
a| (Sirsi) a14279861
040
a| UMI
b| eng
e| rda
e| pn
c| UMI
d| EBLCP
d| UKAHL
d| CHVBK
d| YDX
d| N$T
d| OCLCF
d| OCL
d| OCLCO
d| NLW
d| OCLCQ
d| OCLCO
019
a| 1135455410
a| 1135668457
a| 1148853172
020
a| 9781839216770
020
a| 1839216778
020
z| 9781839214936
035
a| (OCoLC)1158574887
z| (OCoLC)1135455410
z| (OCoLC)1135668457
z| (OCoLC)1148853172
037
a| CL0501000117
b| Safari Books Online
050
4
a| Q325.6
082
0
4
a| 794.81631
2| 23
049
a| MAIN
100
1
a| Lanham, Micheal,
e| author.
245
1
0
a| Hands-on reinforcement learning for games :
b| implementing self-learning agents in games using artificial intelligence techniques /
c| Micheal Lanham.
264
1
a| Birmingham, UK :
b| Packt Publishing,
c| 2020.
300
a| 1 online resource (1 volume) :
b| illustrations
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
588
0
a| Online resource; title from title page (Safari, viewed June 17, 2020).
520
a| The AI revolution is here and it is embracing games. Game developers are being challenged to enlist cutting edge AI as part of their games. In this book, you will look at the journey of building capable AI using reinforcement learning algorithms and techniques. You will learn to solve complex tasks and build next-generation games using a ...
650
0
a| Machine learning.
650
0
a| Artificial intelligence.
650
0
a| Reinforcement learning.
650
0
a| Video games
x| Programming
650
0
a| Application software
x| Development.
650
6
a| Apprentissage automatique.
650
6
a| Intelligence artificielle.
650
6
a| Apprentissage par renforcement (Intelligence artificielle)
650
6
a| Jeux d'ordinateur
x| Programmation.
650
6
a| Logiciels d'application
x| Développement.
650
7
a| artificial intelligence.
2| aat
650
7
a| Mathematical theory of computation.
2| bicssc
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Machine learning.
2| bicssc
650
7
a| Neural networks & fuzzy systems.
2| bicssc
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Computers
x| Machine Theory.
2| bisacsh
650
7
a| Computers
x| Neural Networks.
2| bisacsh
650
7
a| Reinforcement learning.
2| fast
0| (OCoLC)fst01732553
650
7
a| Machine learning.
2| fast
0| (OCoLC)fst01004795
650
7
a| Artificial intelligence.
2| fast
0| (OCoLC)fst00817247
650
7
a| Application software
x| Development.
2| fast
0| (OCoLC)fst00811707
650
7
a| Computer games
x| Programming.
2| fast
0| (OCoLC)fst00872114
776
0
8
i| Print version:
a| Lanham, Micheal.
t| Hands-On Reinforcement Learning for Games : Implementing Self-Learning Agents in Games Using Artificial Intelligence Techniques.
d| Birmingham : Packt Publishing, Limited, ©2020
z| 9781839214936
856
4
0
z| Available to Stanford-affiliated users.
u| http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2346941
x| WMS
y| EBSCO Academic Comprehensive Collection
x| Provider: EBSCO
x| subscribed
x| eLoaderURL
x| uc4
x| ucon1158574887
994
a| 92
b| STF
915
a| NO EXPORT
b| AUTHORITY VENDOR
d| 20220806
905
0
a| Table of Contents Understanding Rewards-Based Learning Dynamic Programming and the Bellman Equation Monte Carlo Methods Temporal Difference Learning Exploring SARSA Going Deep with DQN Going Deeper with DDQN Policy Gradient Methods Optimizing for Continuous Control All about Rainbow DQN Exploiting ML-Agents DRL Frameworks 3D Worlds From DRL to AGI.
1| Nielsen
x| 9781839216770
x| 20220815
920
b| Explore reinforcement learning (RL) techniques to build cutting-edge games using Python libraries such as PyTorch, OpenAI Gym, and TensorFlow Key Features Get to grips with the different reinforcement and DRL algorithms for game development Learn how to implement components such as artificial agents, map and level generation, and audio generation Gain insights into cutting-edge RL research and understand how it is similar to artificial general research Book DescriptionWith the increased presence of AI in the gaming industry, developers are challenged to create highly responsive and adaptive games by integrating artificial intelligence into their projects. This book is your guide to learning how various reinforcement learning techniques and algorithms play an important role in game development with Python. Starting with the basics, this book will help you build a strong foundation in reinforcement learning for game development. Each chapter will assist you in implementing different reinforcement learning techniques, such as Markov decision processes (MDPs), Q-learning, actor-critic methods, SARSA, and deterministic policy gradient algorithms, to build logical self-learning agents. Learning these techniques will enhance your game development skills and add a variety of features to improve your game agent's productivity. As you advance, you'll understand how deep reinforcement learning (DRL) techniques can be used to devise strategies to help agents learn from their actions and build engaging games. By the end of this book, you'll be ready to apply reinforcement learning techniques to build a variety of projects and contribute to open source applications. What you will learn Understand how deep learning can be integrated into an RL agent Explore basic to advanced algorithms commonly used in game development Build agents that can learn and solve problems in all types of environments Train a Deep Q-Network (DQN) agent to solve the CartPole balancing problem Develop game AI agents by understanding the mechanism behind complex AI Integrate all the concepts learned into new projects or gaming agents Who this book is forIf you're a game developer looking to implement AI techniques to build next-generation games from scratch, this book is for you. Machine learning and deep learning practitioners, and RL researchers who want to understand how to use self-learning agents in the game domain will also find this book useful. Knowledge of game development and Python programming experience are required.
1| Nielsen
x| 9781839216770
x| 20220815
596
a| 22
035
a| (Sirsi) ucon1158574887
999
f
f
i| 172f012d-f98a-5efc-8b62-76fbd72705ca
s| f3ca0000-9e32-5c26-beae-bdcd378fb7d7
Holdings JSON
{ "holdings": [ { "id": "6aecceb9-e76a-5372-88e2-88266f19cdcc", "hrid": "ah14279861_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:26:26.186Z", "updatedDate": "2023-08-21T21:26:26.186Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "172f012d-f98a-5efc-8b62-76fbd72705ca", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "172f012d-f98a-5efc-8b62-76fbd72705ca", "hrid": "a14279861", "notes": [ { "note": "Online resource; title from title page (Safari, viewed June 17, 2020)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "The AI revolution is here and it is embracing games. Game developers are being challenged to enlist cutting edge AI as part of their games. In this book, you will look at the journey of building capable AI using reinforcement learning algorithms and techniques. You will learn to solve complex tasks and build next-generation games using a ", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Hands-on reinforcement learning for games : implementing self-learning agents in games using artificial intelligence techniques / Micheal Lanham.", "series": [ ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T21:24:56.122Z", "updatedDate": "2023-08-21T21:24:56.122Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Machine learning", "Artificial intelligence", "Reinforcement learning", "Video games Programming", "Application software Development", "Apprentissage automatique", "Intelligence artificielle", "Apprentissage par renforcement (Intelligence artificielle)", "Jeux d'ordinateur Programmation", "Logiciels d'application Développement", "artificial intelligence", "Mathematical theory of computation", "Neural networks & fuzzy systems", "Computers Intelligence (AI) & Semantics", "Computers Machine Theory", "Computers Neural Networks", "Computer games Programming" ], "languages": [ "eng" ], "indexTitle": "Hands-on reinforcement learning for games : implementing self-learning agents in games using artificial intelligence techniques", "identifiers": [ { "value": "(Sirsi) a14279861", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9781839216770", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "1839216778", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9781839214936", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "(OCoLC)1158574887", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1135455410", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1135668457", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1148853172", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) ucon1158574887", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Birmingham, UK", "publisher": "Packt Publishing", "dateOfPublication": "2020" } ], "contributors": [ { "name": "Lanham, Micheal", "primary": true, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2022-08-06", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "Q325.6", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "794.81631", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "http://search.ebscohost.com/login.aspx?authtype=ip,sso&custid=s4392798&direct=true&scope=site&db=nlebk&AN=2346941", "name": "Resource", "linkText": "EBSCO Academic Comprehensive Collection", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2020 }, "statusUpdatedDate": "2023-08-21T21:24:56.109+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (1 volume) : illustrations" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }