Librarian View
Last updated in SearchWorks on December 10, 2023 5:49am
LEADER 07768cam a2200649Ii 4500
001
a14273499
003
SIRSI
006
m o d
007
cr cnu---unuuu
008
220326s2022 si a o 100 0 eng d
035
a| (Sirsi) a14273499
040
a| EBLCP
b| eng
e| rda
e| pn
c| EBLCP
d| YDX
d| GW5XE
d| OCLCO
d| OCLCF
d| CSt
020
a| 9789811696053
q| (electronic bk.)
020
a| 9811696055
q| (electronic bk.)
020
z| 9789811696046
020
z| 9811696047
024
7
a| 10.1007/978-981-16-9605-3
2| doi
035
a| (OCoLC)1306060952
z| (OCoLC)1305169020
z| (OCoLC)1305439077
z| (OCoLC)1305912407
z| (OCoLC)1306023735
050
4
a| TA347.E96
b| I58 2021
072
7
a| COM043000
2| bisacsh
082
0
4
a| 006.3/823
2| 23
049
a| MAIN
111
2
a| International Conference on Evolutionary Computing and Mobile Sustainable Networks
d| (2021 :
c| Bangalore, India).
245
1
0
a| Evolutionary computing and mobile sustainable networks :
b| proceedings of ICECMSN 2021 /
c| V. Suma, Xavier Fernando, Ke-Lin Du, Haoxiang Wang, editors.
246
3
0
a| ICECMSN 2021
264
1
a| Singapore :
b| Springer,
c| [2022]
264
4
c| ©2022
300
a| 1 online resource (1039 pages) :
b| illustrations (chiefly color).
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
490
1
a| Lecture notes on data engineering and communications technologies ;
v| volume 116
500
a| International conference proceedings.
520
a| This book mainly reflects the recent research works in evolutionary computation technologies and mobile sustainable networks with a specific focus on computational intelligence and communication technologies that widely ranges from theoretical foundations to practical applications in enhancing the sustainability of mobile networks. Today, network sustainability has become a significant research domain in both academia and industries present across the globe. Also, the network sustainability paradigm has generated a solution for existing optimization challenges in mobile communication networks. Recently, the research advances in evolutionary computing technologies including swarm intelligence algorithms and other evolutionary algorithm paradigms are considered as the widely accepted descriptors for mobile sustainable networks virtualization, optimization, and automation. To deal with the emerging impacts on mobile communication networks, this book discusses about the state-of-the research works on developing a sustainable design and their implementation in mobile networks. With the advent of evolutionary computation algorithms, this book contributes varied research chapters to develop a new perspective on mobile sustainable networks.
505
0
a| Improved Grey wolf Optimization based Feature selection and classification using CNN for Diabetic Retinopathy detection -- Feature Selection Using Modified Sine Cosine Algorithm with COVID-19 Dataset -- Blood Cell Image Denoising based on Tunicate Rat Swarm Optimization with Median Filter -- A Hybrid Approach for Deep Noise Suppression using Deep Neural Networks -- Human Health Care Systems Analysis for Cloud Data Structure of Biometric System using ECG Analysis -- Data mining for Solving Medical Diagnostics Problems -- Classification of Diabetic Retinopathy using Ensemble of Machine Learning Classifiers with IDRID Dataset -- Epileptic Seizure Prediction Using Geometrical Features Extracted From HRV Signal -- An Extensive Survey on Outlier Prediction using Mining and Learning Approaches -- Performance Comparison of Data Security Strategies in Fog Computing -- Design and Simulation of a Direct-PSK Based Telecommand Receiver for Small Satellite -- Analysis of Data Aggregation and Clustering Protocol in Wireless Sensor Networks using Machine Learning -- DetecSec : A Framework to Detect and Mitigate ARP Cache Poisoning Attacks -- PAPR Reduction in SDR based OFDM System.
588
a| Description based upon print version of record.
650
0
a| Evolutionary computation
v| Congresses.
650
0
a| Mobile computing
v| Congresses.
650
6
a| Réseaux neuronaux à structure évolutive
v| Congrès.
650
6
a| Informatique mobile
v| Congrès.
650
7
a| Evolutionary computation.
2| fast
0| (OCoLC)fst00917338
650
7
a| Mobile computing.
2| fast
0| (OCoLC)fst01024221
700
1
a| Suma, V.,
e| editor.
700
1
a| Fernando, Xavier N.,
e| editor.
700
1
a| Du, K.-L.,
e| editor.
700
1
a| Wang, Haoxiang
q| (Harry Haoxiang),
e| editor.
776
0
8
i| Print version:
a| Suma, V.
t| Evolutionary Computing and Mobile Sustainable Networks
d| Singapore : Springer Singapore Pte. Limited, c2022
z| 9789811696046
830
0
a| Lecture notes on data engineering and communications technologies ;
v| v. 116.
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-981-16-9605-3
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spon1306060952
994
a| 92
b| STF
905
0
a| Improved Grey wolf Optimization based Feature selection and classification using CNN for Diabetic Retinopathy detection.- Feature Selection Using Modified Sine Cosine Algorithm with COVID-19 Dataset.- Blood Cell Image Denoising based on Tunicate Rat Swarm Optimization with Median Filter.- A Hybrid Approach for Deep Noise Suppression using Deep Neural Networks.- Human Health Care Systems Analysis for Cloud Data Structure of Biometric System using ECG Analysis.- Data mining for Solving Medical Diagnostics Problems.- Classification of Diabetic Retinopathy using Ensemble of Machine Learning Classifiers with IDRID Dataset.- Epileptic Seizure Prediction Using Geometrical Features Extracted From HRV Signal.- An Extensive Survey on Outlier Prediction using Mining and Learning Approaches.- Performance Comparison of Data Security Strategies in Fog Computing.- Design and Simulation of a Direct-PSK Based Telecommand Receiver for Small Satellite .- Analysis of Data Aggregation and Clustering Protocol in Wireless Sensor Networks using Machine Learning.- DetecSec : A Framework to Detect and Mitigate ARP Cache Poisoning Attacks.- PAPR Reduction in SDR based OFDM System.
1| Nielsen
x| 9789811696046
x| 20220815
920
b| This book mainly reflects the recent research works in evolutionary computation technologies and mobile sustainable networks with a specific focus on computational intelligence and communication technologies that widely ranges from theoretical foundations to practical applications in enhancing the sustainability of mobile networks. Today, network sustainability has become a significant research domain in both academia and industries present across the globe. Also, the network sustainability paradigm has generated a solution for existing optimization challenges in mobile communication networks. Recently, the research advances in evolutionary computing technologies including swarm intelligence algorithms and other evolutionary algorithm paradigms are considered as the widely accepted descriptors for mobile sustainable networks virtualization, optimization, and automation. To deal with the emerging impacts on mobile communication networks, this book discusses about the state-of-the research works on developing a sustainable design and their implementation in mobile networks. With the advent of evolutionary computation algorithms, this book contributes varied research chapters to develop a new perspective on mobile sustainable networks.
1| Nielsen
x| 9789811696046
x| 20220815
596
a| 22
035
a| (Sirsi) spon1306060952
999
f
f
i| a3276f88-b82e-5882-b83f-f05e215b351a
s| d4a59dcd-ccfb-57a8-b8ba-896cef467e3d
Holdings JSON
{ "holdings": [ { "id": "5780b0d0-b0e5-5185-8fa3-7b4a7681df50", "hrid": "ah14273499_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:26:15.981Z", "updatedDate": "2023-08-21T21:26:15.981Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "a3276f88-b82e-5882-b83f-f05e215b351a", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "a3276f88-b82e-5882-b83f-f05e215b351a", "hrid": "a14273499", "notes": [ { "note": "International conference proceedings", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "This book mainly reflects the recent research works in evolutionary computation technologies and mobile sustainable networks with a specific focus on computational intelligence and communication technologies that widely ranges from theoretical foundations to practical applications in enhancing the sustainability of mobile networks. Today, network sustainability has become a significant research domain in both academia and industries present across the globe. Also, the network sustainability paradigm has generated a solution for existing optimization challenges in mobile communication networks. Recently, the research advances in evolutionary computing technologies including swarm intelligence algorithms and other evolutionary algorithm paradigms are considered as the widely accepted descriptors for mobile sustainable networks virtualization, optimization, and automation. To deal with the emerging impacts on mobile communication networks, this book discusses about the state-of-the research works on developing a sustainable design and their implementation in mobile networks. With the advent of evolutionary computation algorithms, this book contributes varied research chapters to develop a new perspective on mobile sustainable networks", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" }, { "note": "Improved Grey wolf Optimization based Feature selection and classification using CNN for Diabetic Retinopathy detection -- Feature Selection Using Modified Sine Cosine Algorithm with COVID-19 Dataset -- Blood Cell Image Denoising based on Tunicate Rat Swarm Optimization with Median Filter -- A Hybrid Approach for Deep Noise Suppression using Deep Neural Networks -- Human Health Care Systems Analysis for Cloud Data Structure of Biometric System using ECG Analysis -- Data mining for Solving Medical Diagnostics Problems -- Classification of Diabetic Retinopathy using Ensemble of Machine Learning Classifiers with IDRID Dataset -- Epileptic Seizure Prediction Using Geometrical Features Extracted From HRV Signal -- An Extensive Survey on Outlier Prediction using Mining and Learning Approaches -- Performance Comparison of Data Security Strategies in Fog Computing -- Design and Simulation of a Direct-PSK Based Telecommand Receiver for Small Satellite -- Analysis of Data Aggregation and Clustering Protocol in Wireless Sensor Networks using Machine Learning -- DetecSec : A Framework to Detect and Mitigate ARP Cache Poisoning Attacks -- PAPR Reduction in SDR based OFDM System", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "Description based upon print version of record", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" } ], "title": "Evolutionary computing and mobile sustainable networks : proceedings of ICECMSN 2021 / V. Suma, Xavier Fernando, Ke-Lin Du, Haoxiang Wang, editors.", "series": [ "Lecture notes on data engineering and communications technologies ; volume 116", "Lecture notes on data engineering and communications technologies ; v. 116" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T21:23:46.891Z", "updatedDate": "2023-08-21T21:23:46.891Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Evolutionary computation Congresses", "Mobile computing Congresses", "Réseaux neuronaux à structure évolutive Congrès", "Informatique mobile Congrès", "Evolutionary computation", "Mobile computing" ], "languages": [ "eng" ], "indexTitle": "Evolutionary computing and mobile sustainable networks : proceedings of icecmsn 2021", "identifiers": [ { "value": "(Sirsi) a14273499", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9789811696053 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9811696055 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9789811696046", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "9811696047", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "10.1007/978-981-16-9605-3 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-981-16-9605-3", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-981-16-9605-3", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)1306060952", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1305169020", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1305439077", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1305912407", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1306023735", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spon1306060952", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Singapore", "publisher": "Springer", "dateOfPublication": "[2022]" }, { "role": "Copyright notice date", "place": "", "publisher": "", "dateOfPublication": "©2022" } ], "contributors": [ { "name": "International Conference on Evolutionary Computing and Mobile Sustainable Networks (2021 : Bangalore, India)", "primary": true, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "e8b311a6-3b21-43f2-a269-dd9310cb2d0a" }, { "name": "Suma, V.", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Fernando, Xavier N.", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Du, K.-L.", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Wang, Haoxiang (Harry Haoxiang)", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2022-08-06", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "TA347.E96 I58 2021", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "006.3823", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-981-16-9605-3", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ { "alternativeTitle": "ICECMSN 2021", "alternativeTitleTypeId": "35bbe7f2-1a49-11ed-861d-0242ac120002" } ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2022 }, "statusUpdatedDate": "2023-08-21T21:23:46.595+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (1039 pages) : illustrations (chiefly color)." ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }