Librarian View
Last updated in SearchWorks on December 3, 2023 6:59pm
LEADER 07273cam a2200913Ia 4500
001
a14250417
003
SIRSI
006
m o d
007
cr cn||||m|||a
008
120714s2012 sz a fob 001 0 eng d
035
a| (Sirsi) a14250417
040
a| CaBNvSL
b| eng
e| pn
c| J2I
d| J2I
d| WAU
d| N$T
d| E7B
d| CUS
d| OCLCQ
d| EBLCP
d| YDXCP
d| OCLCF
d| UKMGB
d| OCLCQ
d| COO
d| DEBSZ
d| OCLCQ
d| RIU
d| CEF
d| IUL
d| INT
d| AU@
d| OCLCQ
d| YOU
d| LEAUB
d| NJT
d| OCLCQ
d| UKAHL
d| OCLCO
d| GW5XE
d| CSt
016
7
a| 016834087
2| Uk
020
a| 9781608457267
q| (electronic bk.)
020
a| 1608457265
q| (electronic bk.)
020
z| 9781608457250
q| (pbk.)
020
a| 9783031015601
q| (electronic bk.)
020
a| 3031015606
q| (electronic bk.)
024
7
a| 10.2200/S00429ED1V01Y201207AIM018
2| doi
024
7
a| 10.1007/978-3-031-01560-1
2| doi
035
a| (OCoLC)799360189
z| (OCoLC)1058078157
050
4
a| Q325.75
b| .S472 2012
072
7
a| COM
x| 005030
2| bisacsh
072
7
a| COM
x| 004000
2| bisacsh
082
0
4
a| 006.31
2| 23
049
a| MAIN
100
1
a| Settles, Burr.
245
1
0
a| Active learning /
c| Burr Settles.
260
a| Cham, Switzerland :
b| Springer,
c| ©2012.
300
a| 1 online resource (xiii, 100 pages) :
b| illustrations
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
490
1
a| Synthesis lectures on artificial intelligence and machine learning,
x| 1939-4616 ;
v| #18
500
a| Part of: Synthesis digital library of engineering and computer science.
504
a| Includes bibliographical references (pages 81-96) and index.
505
0
a| Preface -- Acknowledgments.
505
8
a| 1. Automating inquiry -- 1.1 A thought experiment -- 1.2 Active learning -- 1.3 Scenarios for active learning.
505
8
a| 2. Uncertainty sampling -- 2.1 Pushing the boundaries -- 2.2 An example -- 2.3 Measures of uncertainty -- 2.4 Beyond classification -- 2.5 Discussion.
505
8
a| 3. Searching through the hypothesis space -- 3.1 The version space -- 3.2 Uncertainty sampling as version space search -- 3.3 Query by disagreement -- 3.4 Query by committee -- 3.5 Discussion.
505
8
a| 4. Minimizing expected error and variance -- 4.1 Expected error reduction -- 4.2 Variance reduction -- 4.3 Batch queries and submodularity -- 4.4 Discussion.
505
8
a| 5. Exploiting structure in data -- 5.1 Density-weighted methods -- 5.2 Cluster-based active learning -- 5.3 Active + semi-supervised learning -- 5.4 Discussion.
505
8
a| 6. Theory -- 6.1 A unified view -- 6.2 A PAC bound for active learning -- 6.3 Discussion.
505
8
a| 7. Practical considerations -- 7.1 Which algorithm is best? -- 7.2 Real labeling costs -- 7.3 Alternative query types -- 7.4 Skewed label distributions -- 7.5 Unreliable oracles -- 7.6 Multi-task active learning -- 7.7 Data reuse and the unknown model class -- 7.8 Stopping criteria.
505
8
a| A. Nomenclature reference -- Bibliography -- Author's biography -- Index.
510
0
a| Compendex
510
0
a| INSPEC
510
0
a| Google scholar
510
0
a| Google book search
520
3
a| The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose "queries, " usually in the form of unlabeled data instances to be labeled by an "oracle" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries might be formulated, and details many query selection algorithms which have been organized into four broad categories, or "query selection frameworks."We also touch on some of the theoretical foundations of active learning, and conclude with an overview of the strengths and weaknesses of these approaches in practice, including a summary of ongoing work to address these open challenges and opportunities.
588
0
a| Online resource; title from PDF title page (Morgan & Claypool, viewed Sept. 27, 2012).
650
0
a| Supervised learning (Machine learning)
650
0
a| Explanation-based learning.
650
6
a| Apprentissage supervisé (Intelligence artificielle)
650
6
a| Apprentissage par explication (Intelligence artificielle)
650
7
a| COMPUTERS
x| Enterprise Applications
x| Business Intelligence Tools.
2| bisacsh
650
7
a| COMPUTERS
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Explanation-based learning.
2| fast
0| (OCoLC)fst00918543
650
7
a| Supervised learning (Machine learning)
2| fast
0| (OCoLC)fst01139041
653
a| active learning
653
a| expected error reduction
653
a| hierarchical sampling
653
a| optimal experimental design
653
a| query by committee
653
a| query by disagreement
653
a| query learning
653
a| uncertainty sampling
653
a| variance reduction
776
0
8
i| Print version:
a| Settles, Burr.
t| Active Learning.
d| San Rafael, Calif. : Morgan & Claypool, 2012
z| 9781608457250
w| (OCoLC)809876977
830
0
a| Synthesis lectures on artificial intelligence and machine learning ;
v| #18.
x| 1939-4616
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-3-031-01560-1
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spocn799360189
994
a| 92
b| STF
905
0
a| Automating Inquiry Uncertainty Sampling Searching Through the Hypothesis Space Minimizing Expected Error and Variance Exploiting Structure in Data Theory Practical Considerations.
1| Nielsen
x| 9781608457250
x| 20220711
920
b| The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose ""queries, "" usually in the form of unlabeled data instances to be labeled by an ""oracle"" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries might be formulated, and details many query selection algorithms which have been organized into four broad categories, or ""query selection frameworks."" We also touch on some of the theoretical foundations of active learning, and conclude with an overview of the strengths and weaknesses of these approaches in practice, including a summary of ongoing work to address these open challenges and opportunities.
1| Nielsen
x| 9781608457250
x| 20220711
596
a| 22
035
a| (Sirsi) spocn799360189
999
f
f
i| 31570187-0d63-5983-bc71-8abe1758bfae
s| d888ccfc-5a29-55b6-b4b2-765cea0932f4
Holdings JSON
{ "holdings": [ { "id": "52e45af0-d04f-576f-ad8e-9b3d07dc1151", "hrid": "ah14250417_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:26:32.450Z", "updatedDate": "2023-08-21T21:26:32.450Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "31570187-0d63-5983-bc71-8abe1758bfae", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "31570187-0d63-5983-bc71-8abe1758bfae", "hrid": "a14250417", "notes": [ { "note": "Part of: Synthesis digital library of engineering and computer science", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "Includes bibliographical references (pages 81-96) and index", "staffOnly": false, "instanceNoteTypeId": "86b6e817-e1bc-42fb-bab0-70e7547de6c1" }, { "note": "Preface -- Acknowledgments", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "1. Automating inquiry -- 1.1 A thought experiment -- 1.2 Active learning -- 1.3 Scenarios for active learning", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "2. Uncertainty sampling -- 2.1 Pushing the boundaries -- 2.2 An example -- 2.3 Measures of uncertainty -- 2.4 Beyond classification -- 2.5 Discussion", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "3. Searching through the hypothesis space -- 3.1 The version space -- 3.2 Uncertainty sampling as version space search -- 3.3 Query by disagreement -- 3.4 Query by committee -- 3.5 Discussion", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "4. Minimizing expected error and variance -- 4.1 Expected error reduction -- 4.2 Variance reduction -- 4.3 Batch queries and submodularity -- 4.4 Discussion", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "5. Exploiting structure in data -- 5.1 Density-weighted methods -- 5.2 Cluster-based active learning -- 5.3 Active + semi-supervised learning -- 5.4 Discussion", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "6. Theory -- 6.1 A unified view -- 6.2 A PAC bound for active learning -- 6.3 Discussion", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "7. Practical considerations -- 7.1 Which algorithm is best? -- 7.2 Real labeling costs -- 7.3 Alternative query types -- 7.4 Skewed label distributions -- 7.5 Unreliable oracles -- 7.6 Multi-task active learning -- 7.7 Data reuse and the unknown model class -- 7.8 Stopping criteria", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "A. Nomenclature reference -- Bibliography -- Author's biography -- Index", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "Compendex", "staffOnly": false, "instanceNoteTypeId": "6ca9df3f-454d-4b5b-9d41-feb5d5030b99" }, { "note": "INSPEC", "staffOnly": false, "instanceNoteTypeId": "6ca9df3f-454d-4b5b-9d41-feb5d5030b99" }, { "note": "Google scholar", "staffOnly": false, "instanceNoteTypeId": "6ca9df3f-454d-4b5b-9d41-feb5d5030b99" }, { "note": "Google book search", "staffOnly": false, "instanceNoteTypeId": "6ca9df3f-454d-4b5b-9d41-feb5d5030b99" }, { "note": "The key idea behind active learning is that a machine learning algorithm can perform better with less training if it is allowed to choose the data from which it learns. An active learner may pose \"queries, \" usually in the form of unlabeled data instances to be labeled by an \"oracle\" (e.g., a human annotator) that already understands the nature of the problem. This sort of approach is well-motivated in many modern machine learning and data mining applications, where unlabeled data may be abundant or easy to come by, but training labels are difficult, time-consuming, or expensive to obtain. This book is a general introduction to active learning. It outlines several scenarios in which queries might be formulated, and details many query selection algorithms which have been organized into four broad categories, or \"query selection frameworks.\"We also touch on some of the theoretical foundations of active learning, and conclude with an overview of the strengths and weaknesses of these approaches in practice, including a summary of ongoing work to address these open challenges and opportunities", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" }, { "note": "Online resource; title from PDF title page (Morgan & Claypool, viewed Sept. 27, 2012)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" } ], "title": "Active learning / Burr Settles.", "series": [ "Synthesis lectures on artificial intelligence and machine learning, 1939-4616 ; #18", "Synthesis lectures on artificial intelligence and machine learning ; #18. 1939-4616" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T21:22:27.688Z", "updatedDate": "2023-08-21T21:22:27.688Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Supervised learning (Machine learning)", "Explanation-based learning", "Apprentissage supervisé (Intelligence artificielle)", "Apprentissage par explication (Intelligence artificielle)", "COMPUTERS Enterprise Applications Business Intelligence Tools", "COMPUTERS Intelligence (AI) & Semantics" ], "languages": [ "eng" ], "indexTitle": "Active learning", "identifiers": [ { "value": "(Sirsi) a14250417", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9781608457267 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "1608457265 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9781608457250 (pbk.)", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "9783031015601 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "3031015606 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "10.2200/S00429ED1V01Y201207AIM018 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.2200/S00429ED1V01Y201207AIM018", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.2200/S00429ED1V01Y201207AIM018", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "10.1007/978-3-031-01560-1 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-3-031-01560-1", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-3-031-01560-1", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)799360189", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1058078157", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spocn799360189", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "place": "Cham, Switzerland", "publisher": "Springer", "dateOfPublication": "©2012" } ], "contributors": [ { "name": "Settles, Burr", "primary": true, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2022-07-02", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "Q325.75 .S472 2012", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "006.31", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-3-031-01560-1", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2012 }, "statusUpdatedDate": "2023-08-21T21:22:26.994+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (xiii, 100 pages) : illustrations" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }