Librarian View
Last updated in SearchWorks on November 25, 2023 4:53am
LEADER 06411cam a2200673Ii 4500
001
a14007391
003
SIRSI
006
m o d
007
cr cnu|||unuuu
008
170227s2017 sz a ob 000 0 eng d
035
a| (Sirsi) a14007391
040
a| GW5XE
b| eng
e| rda
e| pn
c| GW5XE
d| YDX
d| OCLCF
d| COO
d| IOG
d| AZU
d| UWO
d| VT2
d| UPM
d| MERER
d| ESU
d| Z5A
d| OCLCQ
d| JBG
d| IAD
d| ICW
d| ICN
d| OTZ
d| OCLCQ
d| U3W
d| CAUOI
d| KSU
d| EBLCP
d| WYU
d| UKMGB
d| AUD
d| OCLCQ
d| ERF
d| UKBTH
d| LEATE
d| OCLCQ
d| SRU
d| OCLCQ
d| OCLCO
d| NLW
d| OCLCO
d| UKAHL
d| CSt
015
a| GBB8N7408
2| bnb
016
7
a| 019164872
2| Uk
020
a| 9783319536095
q| (electronic bk.)
020
a| 3319536095
q| (electronic bk.)
020
z| 9783319536088
q| (print)
020
z| 3319536087
024
7
a| 10.1007/978-3-319-53609-5
2| doi
035
a| (OCoLC)973879035
z| (OCoLC)974470614
z| (OCoLC)974546249
z| (OCoLC)981851162
z| (OCoLC)1005769498
z| (OCoLC)1011853554
z| (OCoLC)1048114146
z| (OCoLC)1066459589
z| (OCoLC)1066468113
z| (OCoLC)1086529450
z| (OCoLC)1112508707
z| (OCoLC)1113378750
z| (OCoLC)1113575242
z| (OCoLC)1116975680
z| (OCoLC)1122846271
z| (OCoLC)1127164039
z| (OCoLC)1136174543
037
a| com.springer.onix.9783319536095
b| Springer Nature
050
4
a| Q337.3
072
7
a| UYQ
2| bicssc
072
7
a| COM004000
2| bisacsh
082
0
4
a| 006.3/824
2| 23
049
a| MAIN
100
1
a| Valentini, Gabriele,
e| author.
245
1
0
a| Achieving consensus in robot swarms :
b| design and analysis of strategies for the best-of-n problem /
c| Gabriele Valentini.
264
1
a| Cham, Switzerland :
b| Springer,
c| 2017.
300
a| 1 online resource (xiv, 146 pages) :
b| illustrations (some color)
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
347
a| text file
347
b| PDF
490
1
a| Studies in computational intelligence,
x| 1860-949X ;
v| volume 706
504
a| Includes bibliographical references.
588
0
a| Online resource; title from PDF title page (SpringerLink, viewed February 27, 2017).
505
0
a| Introduction -- Part 1:Background and Methodology -- Discrete Consensus Achievement in Artificial Systems -- Modular Design of Strategies for the Best-of-n Problem -- Part 2:Mathematical Modeling and Analysis -- Indirect Modulation of Majority-Based Decisions -- Direct Modulation of Voter-Based Decisions -- Direct Modulation of Majority-Based Decisions -- Part 3:Robot Experiments -- A Robot Experiment in Site Selection -- A Robot Experiment in Collective Perception -- Part 4:Discussion and Annexes -- Conclusions -- Background on Markov Chains.
520
a| This book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identifies a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a finite set when optimizing benefits and costs. The book leverages the identification of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, using robot experiments to show how the designed strategies can be ported to different application scenarios.
650
0
a| Swarm intelligence.
650
0
a| Robotics.
650
7
a| Robotics.
2| bicssc
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Technology & Engineering
x| Robotics.
2| bisacsh
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Robotics.
2| fast
0| (OCoLC)fst01098997
650
7
a| Swarm intelligence.
2| fast
0| (OCoLC)fst01139953
776
0
8
i| Print version:
a| Valentini, Gabriele.
t| Achieving consensus in robot swarms.
d| Cham, Switzerland : Springer, 2017
z| 3319536087
z| 9783319536088
w| (OCoLC)968663431
830
0
a| Studies in computational intelligence ;
v| v. 706.
x| 1860-949X
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-3-319-53609-5
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spocn973879035
994
a| 92
b| STF
905
0
a| Introduction.- Part 1:Background and Methodology.- Discrete Consensus Achievement in Artificial Systems.- Modular Design of Strategies for the Best-of-n Problem.- Part 2:Mathematical Modeling and Analysis.- Indirect Modulation of Majority-Based Decisions.- Direct Modulation of Voter-Based Decisions.- Direct Modulation of Majority-Based Decisions.- Part 3:Robot Experiments.- A Robot Experiment in Site Selection.- A Robot Experiment in Collective Perception.- Part 4:Discussion and Annexes.- Conclusions.- Background on Markov Chains.
1| Nielsen
x| 9783319536088
x| 20211004
920
b| This book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identifies a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a finite set when optimizing benefits and costs. The book leverages the identification of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, using robot experiments to show how the designed strategies can be ported to different application scenarios.
1| Nielsen
x| 9783319536088
x| 20211004
596
a| 22
035
a| (Sirsi) spocn973879035
999
f
f
i| 954f6d2b-572c-552b-ad8d-61ee146b599f
s| b1d61e5f-5a64-526f-bd10-653092a45feb
Holdings JSON
{ "holdings": [ { "id": "c0807d3e-a482-5395-b318-1a5ad8c527b5", "hrid": "ah14007391_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:07:01.104Z", "updatedDate": "2023-08-21T21:07:01.104Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "954f6d2b-572c-552b-ad8d-61ee146b599f", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "954f6d2b-572c-552b-ad8d-61ee146b599f", "hrid": "a14007391", "notes": [ { "note": "Includes bibliographical references", "staffOnly": false, "instanceNoteTypeId": "86b6e817-e1bc-42fb-bab0-70e7547de6c1" }, { "note": "Online resource; title from PDF title page (SpringerLink, viewed February 27, 2017)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Introduction -- Part 1:Background and Methodology -- Discrete Consensus Achievement in Artificial Systems -- Modular Design of Strategies for the Best-of-n Problem -- Part 2:Mathematical Modeling and Analysis -- Indirect Modulation of Majority-Based Decisions -- Direct Modulation of Voter-Based Decisions -- Direct Modulation of Majority-Based Decisions -- Part 3:Robot Experiments -- A Robot Experiment in Site Selection -- A Robot Experiment in Collective Perception -- Part 4:Discussion and Annexes -- Conclusions -- Background on Markov Chains", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "This book focuses on the design and analysis of collective decision-making strategies for the best-of-n problem. After providing a formalization of the structure of the best-of-n problem supported by a comprehensive survey of the swarm robotics literature, it introduces the functioning of a collective decision-making strategy and identifies a set of mechanisms that are essential for a strategy to solve the best-of-n problem. The best-of-n problem is an abstraction that captures the frequent requirement of a robot swarm to choose one option from of a finite set when optimizing benefits and costs. The book leverages the identification of these mechanisms to develop a modular and model-driven methodology to design collective decision-making strategies and to analyze their performance at different level of abstractions. Lastly, the author provides a series of case studies in which the proposed methodology is used to design different strategies, using robot experiments to show how the designed strategies can be ported to different application scenarios", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Achieving consensus in robot swarms : design and analysis of strategies for the best-of-n problem / Gabriele Valentini.", "series": [ "Studies in computational intelligence, 1860-949X ; volume 706", "Studies in computational intelligence ; v. 706. 1860-949X" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T21:04:22.221Z", "updatedDate": "2023-08-21T21:04:22.221Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Swarm intelligence", "Robotics", "Artificial intelligence", "Technology & Engineering Robotics", "Computers Intelligence (AI) & Semantics" ], "languages": [ "eng" ], "indexTitle": "Achieving consensus in robot swarms : design and analysis of strategies for the best-of-n problem", "identifiers": [ { "value": "(Sirsi) a14007391", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9783319536095 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "3319536095 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9783319536088 (print)", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "3319536087", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "10.1007/978-3-319-53609-5 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-3-319-53609-5", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-3-319-53609-5", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)973879035", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)974470614", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)974546249", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)981851162", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1005769498", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1011853554", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1048114146", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1066459589", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1066468113", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1086529450", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1112508707", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1113378750", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1113575242", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1116975680", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1122846271", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1127164039", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1136174543", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spocn973879035", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Cham, Switzerland", "publisher": "Springer", "dateOfPublication": "2017" } ], "contributors": [ { "name": "Valentini, Gabriele", "primary": true, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2021-09-25", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "Q337.3", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "006.3824", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-3-319-53609-5", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2017 }, "statusUpdatedDate": "2023-08-21T21:04:22.200+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (xiv, 146 pages) : illustrations (some color)", "text file", "PDF" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }