Librarian View
Last updated in SearchWorks on November 25, 2023 3:10am
LEADER 05074cam a2200637 i 4500
001
a14007202
003
SIRSI
006
m o d
007
cr cnu|||unuuu
008
161020t20162017sz a ob 001 0 eng d
035
a| (Sirsi) a14007202
040
a| GW5XE
b| eng
e| rda
e| pn
c| GW5XE
d| OCLCF
d| UAB
d| IOG
d| ESU
d| Z5A
d| JBG
d| IAD
d| ICW
d| ICN
d| OTZ
d| YDX
d| U3W
d| CAUOI
d| OCLCQ
d| KSU
d| EBLCP
d| UKMGB
d| OCLCQ
d| OCLCO
d| OCLCQ
d| CSt
015
a| GBB8N4320
2| bnb
016
7
a| 019154557
2| Uk
020
a| 9783319461861
q| (electronic bk.)
020
a| 3319461869
q| (electronic bk.)
020
z| 9783319461847
q| (print)
020
z| 3319461842
024
7
a| 10.1007/978-3-319-46186-1
2| doi
035
a| (OCoLC)960947110
z| (OCoLC)962009421
037
a| com.springer.onix.9783319461861
b| Springer Nature
050
4
a| Q325.5
082
0
4
a| 006.3/1
2| 23
049
a| MAIN
100
1
a| Jayadeva,
e| author.
245
1
0
a| Twin support vector machines :
b| models, extensions and applications /
c| Jayadeva, Reshma Khemchandani, Suresh Chandra.
264
1
a| Cham, Switzerland :
b| Springer,
c| [2016]
264
4
c| ©2017
300
a| 1 online resource (xiv, 211 pages) :
b| illustrations (some color)
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
490
1
a| Studies in computational intelligence,
x| 1860-949X ;
v| volume 659
504
a| Includes bibliographical references and index.
588
0
a| Online resource; title from PDF title page (SpringerLink, viewed October 20, 2016).
505
0
a| Introduction -- Generalized Eigenvalue Proximal Support Vector Machines -- Twin Support Vector Machines (TWSVM) for Classification -- TWSVR: Twin Support Vector Machine Based Regression -- Variants of Twin Support Vector Machines: Some More Formulations -- TWSVM for Unsupervised and Semi-Supervised Learning -- Some Additional Topics -- Applications Based on TWSVM -- References.
520
a| This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on "Additional Topics" has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.
650
0
a| Support vector machines.
650
6
a| Machines à vecteurs supports.
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Support vector machines.
2| fast
0| (OCoLC)fst01747369
700
1
a| Khemchandani, Reshma,
e| author.
700
1
a| Chandra, Suresh,
d| 1944-
e| author.
776
0
8
i| Print version:
a| Jayadeva.
t| Twin support vector machines.
d| Cham, Switzerland : Springer, [2016]
z| 3319461842
z| 9783319461847
w| (OCoLC)956623625
830
0
a| Studies in computational intelligence ;
v| v. 659.
x| 1860-949X
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-3-319-46186-1
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spocn960947110
994
a| 92
b| STF
905
0
a| Introduction.- Generalized Eigenvalue Proximal Support Vector Machines.- Twin Support Vector Machines (TWSVM) for Classification.- TWSVR: Twin Support Vector Machine Based Regression.- Variants of Twin Support Vector Machines: Some More Formulations.- TWSVM for Unsupervised and Semi-Supervised Learning.- Some Additional Topics.- Applications Based on TWSVM.- References.
1| Nielsen
x| 9783319461847
x| 20211004
920
b| This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on "Additional Topics" has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance.
1| Nielsen
x| 9783319461847
x| 20211004
596
a| 22
035
a| (Sirsi) spocn960947110
999
f
f
i| 79b6622b-a7f5-5790-9615-cfde722c6126
s| 75592b3e-ccb6-58a5-ae92-a3f707991f54
Holdings JSON
{ "holdings": [ { "id": "bb799e4c-5d4f-5784-89a0-8206acc0f5aa", "hrid": "ah14007202_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T21:07:00.427Z", "updatedDate": "2023-08-21T21:07:00.427Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "79b6622b-a7f5-5790-9615-cfde722c6126", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "79b6622b-a7f5-5790-9615-cfde722c6126", "hrid": "a14007202", "notes": [ { "note": "Includes bibliographical references and index", "staffOnly": false, "instanceNoteTypeId": "86b6e817-e1bc-42fb-bab0-70e7547de6c1" }, { "note": "Online resource; title from PDF title page (SpringerLink, viewed October 20, 2016)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Introduction -- Generalized Eigenvalue Proximal Support Vector Machines -- Twin Support Vector Machines (TWSVM) for Classification -- TWSVR: Twin Support Vector Machine Based Regression -- Variants of Twin Support Vector Machines: Some More Formulations -- TWSVM for Unsupervised and Semi-Supervised Learning -- Some Additional Topics -- Applications Based on TWSVM -- References", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "This book provides a systematic and focused study of the various aspects of twin support vector machines (TWSVM) and related developments for classification and regression. In addition to presenting most of the basic models of TWSVM and twin support vector regression (TWSVR) available in the literature, it also discusses the important and challenging applications of this new machine learning methodology. A chapter on \"Additional Topics\" has been included to discuss kernel optimization and support tensor machine topics, which are comparatively new but have great potential in applications. It is primarily written for graduate students and researchers in the area of machine learning and related topics in computer science, mathematics, electrical engineering, management science and finance", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Twin support vector machines : models, extensions and applications / Jayadeva, Reshma Khemchandani, Suresh Chandra.", "series": [ "Studies in computational intelligence, 1860-949X ; volume 659", "Studies in computational intelligence ; v. 659. 1860-949X" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T21:04:22.221Z", "updatedDate": "2023-08-21T21:04:22.221Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Support vector machines", "Machines à vecteurs supports", "Artificial intelligence", "Computers Intelligence (AI) & Semantics" ], "languages": [ "eng" ], "indexTitle": "Twin support vector machines : models, extensions and applications", "identifiers": [ { "value": "(Sirsi) a14007202", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9783319461861 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "3319461869 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9783319461847 (print)", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "3319461842", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "10.1007/978-3-319-46186-1 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-3-319-46186-1", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-3-319-46186-1", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)960947110", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)962009421", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spocn960947110", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Cham, Switzerland", "publisher": "Springer", "dateOfPublication": "[2016]" }, { "role": "Copyright notice date", "place": "", "publisher": "", "dateOfPublication": "©2017" } ], "contributors": [ { "name": "Jayadeva", "primary": true, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Khemchandani, Reshma", "primary": false, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Chandra, Suresh, 1944-", "primary": false, "contributorTypeId": "6e09d47d-95e2-4d8a-831b-f777b8ef6d81", "contributorTypeText": "author.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2021-09-25", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "Q325.5", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "006.31", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-3-319-46186-1", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "end": 2017, "start": 2016 }, "statusUpdatedDate": "2023-08-21T21:04:22.200+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (xiv, 211 pages) : illustrations (some color)" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }