Librarian View
Last updated in SearchWorks on November 24, 2023 11:16pm
LEADER 06720cam a2200721 i 4500
001
a13900142
003
SIRSI
006
m o d
007
cr cnu|||unuuu
008
171208s2018 sz a o 001 0 eng d
035
a| (Sirsi) a13900142
040
a| GW5XE
b| eng
e| rda
e| pn
c| GW5XE
d| OCLCF
d| UAB
d| VT2
d| YDX
d| AZU
d| UPM
d| MERER
d| OCLCQ
d| U3W
d| CNCEN
d| WYU
d| OCLCQ
d| LVT
d| UKMGB
d| CAUOI
d| OCLCQ
d| CSt
015
a| GBB8N8658
2| bnb
016
7
a| 019169213
2| Uk
020
a| 9783319709420
q| (electronic bk.)
020
a| 3319709429
q| (electronic bk.)
020
z| 9783319709413
q| (print)
020
z| 3319709410
024
7
a| 10.1007/978-3-319-70942-0
2| doi
035
a| (OCoLC)1014336606
z| (OCoLC)1018224042
z| (OCoLC)1021197374
z| (OCoLC)1026996792
z| (OCoLC)1032283402
z| (OCoLC)1059236568
z| (OCoLC)1066585549
z| (OCoLC)1081248860
z| (OCoLC)1086472008
037
a| com.springer.onix.9783319709420
b| Springer Nature
050
4
a| HB139
072
7
a| UYQ
2| bicssc
072
7
a| COM004000
2| bisacsh
082
0
4
a| 330.01/5195
2| 23
049
a| MAIN
245
0
0
a| Predictive econometrics and big data /
c| Vladik Kreinovich, Songsak Sriboonchitta, Nopasit Chakpitak, editors.
264
1
a| Cham, Switzerland :
b| Springer,
c| 2018.
300
a| 1 online resource (xii, 780 pages) :
b| illustrations
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
347
a| text file
347
b| PDF
490
1
a| Studies in computational intelligence,
x| 1860-949X ;
v| volume 753
500
a| Includes author index.
588
0
a| Online resource; title from PDF title page (SpringerLink, viewed December 8, 2017).
505
0
a| Data in the 21st Century -- The Understanding of Dependent Structure and Co-Movement of World Stock Exchanges Under the Economic Cycle -- Macro-Econometric Forecasting for During Periods of Economic Cycle Using Bayesian Extreme Value Optimization Algorithm -- Generalize Weighted in Interval Data for Fitting a Vector Autoregressive Model -- Asymmetric Effect with Quantile Regression for Interval-valued Variables -- Emissions, Trade Openness, Urbanisation, and Income in Thailand: An Empirical Analysis -- Does Forecasting Bene?t from Mixed-Frequency Data Sampling Model: The Evidence from Forecasting GDP Growth Using Financial Factor in Thailand -- How Better Are Predictive Models: Analysis on the Practically Important Example of Robust Interval Uncertainty.
520
a| This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques? which directly aim at predicting economic phenomena; and big data techniques? which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.
650
0
a| Econometrics.
650
0
a| Big data.
650
7
a| Computers
x| Intelligence (AI) & Semantics.
2| bisacsh
650
7
a| Business & Economics
x| Econometrics.
2| bisacsh
650
7
a| Artificial intelligence.
2| bicssc
650
7
a| Econometrics.
2| bicssc
650
7
a| Big data.
2| fast
0| (OCoLC)fst01892965
650
7
a| Econometrics.
2| fast
0| (OCoLC)fst00901574
700
1
a| Kreinovich, Vladik
e| editor.
700
0
a| Songsak Sriboonchitta,
e| editor.
700
1
a| Chakpitak, Nopasit,
e| editor.
776
0
8
i| Print version:
t| Predictive econometrics and big data.
d| Cham, Switzerland : Springer, 2018
z| 3319709410
z| 9783319709413
w| (OCoLC)1006478974
830
0
a| Studies in computational intelligence ;
v| 753.
x| 1860-949X
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-3-319-70942-0
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spon1014336606
994
a| 92
b| STF
905
0
a| Data in the 21st Century.- The Understanding of Dependent Structure and Co-Movement of World Stock Exchanges Under the Economic Cycle.- Macro-Econometric Forecasting for During Periods of Economic Cycle Using Bayesian Extreme Value Optimization Algorithm.- Generalize Weighted in Interval Data for Fitting a Vector Autoregressive Model.- Asymmetric Effect with Quantile Regression for Interval-valued Variables.- Emissions, Trade Openness, Urbanisation, and Income in Thailand: An Empirical Analysis.- Does Forecasting Benefit from Mixed-Frequency Data Sampling Model: The Evidence from Forecasting GDP Growth Using Financial Factor in Thailand.- How Better Are Predictive Models: Analysis on the Practically Important Example of Robust Interval Uncertainty.
1| Nielsen
x| 9783319709413
x| 20210705
920
b| This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques - which directly aim at predicting economic phenomena; and big data techniques - which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data.
1| Nielsen
x| 9783319709413
x| 20210705
596
a| 22
035
a| (Sirsi) spon1014336606
999
f
f
i| 2cc70eff-e72e-50cb-b71a-60f2192d05cf
s| 68d76516-18a4-53c0-a26a-cf1d633107cf
Holdings JSON
{ "holdings": [ { "id": "3bb28643-ab47-5342-9cd7-1f613ded9d77", "hrid": "ah13900142_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T20:49:37.469Z", "updatedDate": "2023-08-21T20:49:37.469Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "2cc70eff-e72e-50cb-b71a-60f2192d05cf", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "2cc70eff-e72e-50cb-b71a-60f2192d05cf", "hrid": "a13900142", "notes": [ { "note": "Includes author index", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "Online resource; title from PDF title page (SpringerLink, viewed December 8, 2017)", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Data in the 21st Century -- The Understanding of Dependent Structure and Co-Movement of World Stock Exchanges Under the Economic Cycle -- Macro-Econometric Forecasting for During Periods of Economic Cycle Using Bayesian Extreme Value Optimization Algorithm -- Generalize Weighted in Interval Data for Fitting a Vector Autoregressive Model -- Asymmetric Effect with Quantile Regression for Interval-valued Variables -- Emissions, Trade Openness, Urbanisation, and Income in Thailand: An Empirical Analysis -- Does Forecasting Bene?t from Mixed-Frequency Data Sampling Model: The Evidence from Forecasting GDP Growth Using Financial Factor in Thailand -- How Better Are Predictive Models: Analysis on the Practically Important Example of Robust Interval Uncertainty", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "This book presents recent research on predictive econometrics and big data. Gathering edited papers presented at the 11th International Conference of the Thailand Econometric Society (TES2018), held in Chiang Mai, Thailand, on January 10-12, 2018, its main focus is on predictive techniques? which directly aim at predicting economic phenomena; and big data techniques? which enable us to handle the enormous amounts of data generated by modern computers in a reasonable time. The book also discusses the applications of more traditional statistical techniques to econometric problems. Econometrics is a branch of economics that employs mathematical (especially statistical) methods to analyze economic systems, to forecast economic and financial dynamics, and to develop strategies for achieving desirable economic performance. It is therefore important to develop data processing techniques that explicitly focus on prediction. The more data we have, the better our predictions will be. As such, these techniques are essential to our ability to process huge amounts of available data", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Predictive econometrics and big data / Vladik Kreinovich, Songsak Sriboonchitta, Nopasit Chakpitak, editors.", "series": [ "Studies in computational intelligence, 1860-949X ; volume 753", "Studies in computational intelligence ; 753. 1860-949X" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T20:47:39.092Z", "updatedDate": "2023-08-21T20:47:39.092Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Econometrics", "Big data", "Computers Intelligence (AI) & Semantics", "Business & Economics Econometrics", "Artificial intelligence" ], "languages": [ "eng" ], "indexTitle": "Predictive econometrics and big data", "identifiers": [ { "value": "(Sirsi) a13900142", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9783319709420 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "3319709429 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9783319709413 (print)", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "3319709410", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "10.1007/978-3-319-70942-0 doi", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-3-319-70942-0", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-3-319-70942-0", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)1014336606", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1018224042", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1021197374", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1026996792", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1032283402", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1059236568", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1066585549", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1081248860", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(OCoLC)1086472008", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spon1014336606", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "role": "Publication", "place": "Cham, Switzerland", "publisher": "Springer", "dateOfPublication": "2018" } ], "contributors": [ { "name": "Kreinovich, Vladik", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Songsak Sriboonchitta", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Chakpitak, Nopasit", "primary": false, "contributorTypeId": "9deb29d1-3e71-4951-9413-a80adac703d0", "contributorTypeText": "editor.", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2021-06-27", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "HB139", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "330.015195", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-3-319-70942-0", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2018 }, "statusUpdatedDate": "2023-08-21T20:47:38.194+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (xii, 780 pages) : illustrations", "text file", "PDF" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }