First-order and stochastic optimization methods for machine learning
- Responsibility
- Guanghui Lan.
- Digital
- text file
- Imprint
- Cham : Springer, 2020.
- Physical description
- 1 online resource (591 pages)
- Series
- Springer series in the data sciences.
Online
More options
Description
Creators/Contributors
- Author/Creator
- Lan, Guanghui, 1976-
Contents/Summary
- Bibliography
- Includes bibliographical references and index.
- Contents
-
- Machine Learning Models.- Convex Optimization Theory.- Deterministic Convex Optimization.- Stochastic Convex Optimization.- Convex Finite-sum and Distributed Optimization.- Nonconvex Optimization.- Projection-free Methods.- Operator Sliding and Decentralized Optimization.
- (source: Nielsen Book Data)
- Publisher's summary
-
This book covers not only foundational materials but also the most recent progresses made during the past few years on the area of machine learning algorithms. In spite of the intensive research and development in this area, there does not exist a systematic treatment to introduce the fundamental concepts and recent progresses on machine learning algorithms, especially on those based on stochastic optimization methods, randomized algorithms, nonconvex optimization, distributed and online learning, and projection free methods. This book will benefit the broad audience in the area of machine learning, artificial intelligence and mathematical programming community by presenting these recent developments in a tutorial style, starting from the basic building blocks to the most carefully designed and complicated algorithms for machine learning.
(source: Nielsen Book Data)
Subjects
Bibliographic information
- Publication date
- 2020
- Series
- Springer Series in the Data Sciences
- ISBN
- 9783030395681 (electronic bk.)
- 3030395685 (electronic bk.)
- 3030395677
- 9783030395674
- DOI
- 10.1007/978-3-030-39568-1