Librarian View
Last updated in SearchWorks on December 4, 2023 5:36am
LEADER 08095cam a2200793 a 4500
001
a13574136
003
SIRSI
006
m o d
007
cr un|---aucuu
008
191214s2020 sz o 101 0 eng d
035
a| (Sirsi) a13574136
040
a| EBLCP
b| eng
e| pn
c| EBLCP
d| GW5XE
d| OCLCF
d| OCLCQ
d| LQU
d| LEATE
d| ESU
d| UKMGB
d| OCLCO
d| OCLCQ
d| OCLCO
d| COM
d| OCLCO
d| CSt
015
a| GBC066318
2| bnb
016
7
a| 019640960
2| Uk
020
a| 9783030360566
q| (electronic bk.)
020
a| 3030360563
q| (electronic bk.)
020
z| 9783030360559
q| (print)
024
8
a| 10.1007/978-3-030-36
035
a| (OCoLC)1130899732
z| (OCoLC)1137845886
037
a| com.springer.onix.9783030360566
b| Springer Nature
050
4
a| QA76.9.S63
082
0
4
a| 006.3
049
a| MAIN
111
2
a| SCDM (Conference)
n| (4th :
d| 2020 :
c| Melaka, Malaysia)
245
1
0
a| Recent advances on soft computing and data mining :
b| Proceedings of the Fourth International Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22-23 2020 /
c| Rozaida Ghazali, Nazri Mohd Nawi, Mustafa Mat Deris, Jemal H. Abawajy, editors.
246
3
a| SCDM 2020
260
a| Cham :
b| Springer,
c| 2020.
300
a| 1 online resource (491 pages)
336
a| text
b| txt
2| rdacontent
337
a| computer
b| c
2| rdamedia
338
a| online resource
b| cr
2| rdacarrier
490
1
a| Advances in Intelligent Systems and Computing Ser. ;
v| 978
500
a| International conference proceedings.
500
a| Includes author index.
588
0
a| Print version record.
505
0
a| Chapter 1: An Enhanced Model for Digital Reference Services (MDRS) -- Chapter 2: Fuzzy Random Based Mean Variance Model For Agricultural Production Planning -- Chapter 3: Residual Neural Network vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition -- Chapter 4: Incorporating the Markov Chain Model in WBSN for Improving Patients Remote Monitoring Systems -- Chapter 5: Designing Deep Neural Network with Chicken Swarm Optimization for Violence Video Classification using VSD2014 Dataset -- Chapter 6: Header Based Email Spam Detection Framework Using Support Vector Machine (SVM) Technique -- Chapter 7: A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Case Study of Medical Surgery Departments -- Chapter 8: Link Bandwidth Recommendation for Indonesian E-Health Grid -- Chapter 9: Investigating the Optimal Parameterization of Deep Neural Network and Synthetic Data Workflow for Imbalance Liver Disorder Dataset Classification -- Chapter 10: Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradigm on Hadoop Environment (GAPKCA) -- Chapter 11: Android Botnet Detection by Classification Techniques.
520
a| This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used.
650
0
a| Soft computing
v| Congresses.
650
0
a| Data mining
v| Congresses.
650
0
a| Evolutionary computation
v| Congresses.
650
0
a| Pattern recognition systems
v| Congresses.
650
0
a| Human-computer interaction
v| Congresses.
650
6
a| Informatique douce
v| Congrès.
650
6
a| Exploration de données (Informatique)
v| Congrès.
650
6
a| Réseaux neuronaux à structure évolutive
v| Congrès.
650
6
a| Reconnaissance des formes (Informatique)
v| Congrès.
650
7
a| Data mining.
2| fast
0| (OCoLC)fst00887946
650
7
a| Evolutionary computation.
2| fast
0| (OCoLC)fst00917338
650
7
a| Human-computer interaction.
2| fast
0| (OCoLC)fst00963494
650
7
a| Pattern recognition systems.
2| fast
0| (OCoLC)fst01055266
650
7
a| Soft computing.
2| fast
0| (OCoLC)fst01124115
700
1
a| Ghazali, Rozaida.
700
1
a| Nawi, Nazri Mohd.
700
1
a| Deris, Mustafa Mat.
700
1
a| Abawajy, Jemal H.,
d| 1982-
776
0
8
i| Print version:
a| Ghazali, Rozaida.
t| Recent Advances on Soft Computing and Data Mining : Proceedings of the Fourth International Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22-23 2020.
d| Cham : Springer, ©2020
z| 9783030360559
830
0
a| Advances in intelligent systems and computing ;
v| 978.
856
4
0
z| Available to Stanford-affiliated users.
u| https://link.springer.com/10.1007/978-3-030-36056-6
x| WMS
y| SpringerLink
x| Provider: Springer
x| purchased
x| eLoaderURL
x| sp4
x| spon1130899732
994
a| 92
b| STF
905
0
a| Chapter 1: An Enhanced Model for Digital Reference Services (MDRS).- Chapter 2: Fuzzy Random Based Mean Variance Model For Agricultural Production Planning.- Chapter 3: Residual Neural Network vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition.- Chapter 4: Incorporating the Markov Chain Model in WBSN for Improving Patients' Remote Monitoring Systems.- Chapter 5: Designing Deep Neural Network with Chicken Swarm Optimization for Violence Video Classification using VSD2014 Dataset.- Chapter 6: Header Based Email Spam Detection Framework Using Support Vector Machine (SVM) Technique.- Chapter 7: A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Case Study of Medical Surgery Departments.- Chapter 8: Link Bandwidth Recommendation for Indonesian E-Health Grid.- Chapter 9: Investigating the Optimal Parameterization of Deep Neural Network and Synthetic Data Workflow for Imbalance Liver Disorder Dataset Classification.- Chapter 10: Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradigm on Hadoop Environment (GAPKCA).- Chapter 11: Android Botnet Detection by Classification Techniques.
1| Nielsen
x| 9783030360559
x| 20200511
920
b| This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used.
1| Nielsen
x| 9783030360559
x| 20200511
596
a| 22
035
a| (Sirsi) spon1130899732
999
f
f
i| 977b9192-6dfe-59aa-bec8-446e68e86519
s| 667576c5-be3e-564c-b58f-88e71f7bd9a9
Holdings JSON
{ "holdings": [ { "id": "fb10b6f7-7bcc-5089-8ea4-4d4a8d0e49d5", "hrid": "ah13574136_1", "notes": [ ], "_version": 1, "metadata": { "createdDate": "2023-08-21T20:19:12.508Z", "updatedDate": "2023-08-21T20:19:12.508Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "sourceId": "f32d531e-df79-46b3-8932-cdd35f7a2264", "boundWith": null, "formerIds": [ ], "illPolicy": null, "instanceId": "977b9192-6dfe-59aa-bec8-446e68e86519", "holdingsType": { "id": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "name": "Electronic", "source": "folio" }, "holdingsItems": [ ], "callNumberType": null, "holdingsTypeId": "996f93e2-5b5e-4cf2-9168-33ced1f95eed", "electronicAccess": [ ], "bareHoldingsItems": [ ], "holdingsStatements": [ ], "statisticalCodeIds": [ ], "administrativeNotes": [ ], "effectiveLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "permanentLocationId": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "suppressFromDiscovery": false, "holdingsStatementsForIndexes": [ ], "holdingsStatementsForSupplements": [ ], "location": { "effectiveLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } }, "permanentLocation": { "id": "b0a1a8c3-cc9a-487c-a2ed-308fc3a49a91", "code": "SUL-ELECTRONIC", "name": "online resource", "campus": { "id": "c365047a-51f2-45ce-8601-e421ca3615c5", "code": "SUL", "name": "Stanford Libraries" }, "details": { }, "library": { "id": "c1a86906-ced0-46cb-8f5b-8cef542bdd00", "code": "SUL", "name": "SUL" }, "isActive": true, "institution": { "id": "8d433cdd-4e8f-4dc1-aa24-8a4ddb7dc929", "code": "SU", "name": "Stanford University" } } } } ], "items": [ ] }
FOLIO JSON
{ "pieces": [ null ], "instance": { "id": "977b9192-6dfe-59aa-bec8-446e68e86519", "hrid": "a13574136", "notes": [ { "note": "International conference proceedings", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "Includes author index", "staffOnly": false, "instanceNoteTypeId": "6a2533a7-4de2-4e64-8466-074c2fa9308c" }, { "note": "Print version record", "staffOnly": false, "instanceNoteTypeId": "66ea8f28-d5da-426a-a7c9-739a5d676347" }, { "note": "Chapter 1: An Enhanced Model for Digital Reference Services (MDRS) -- Chapter 2: Fuzzy Random Based Mean Variance Model For Agricultural Production Planning -- Chapter 3: Residual Neural Network vs Local Binary Convolutional Neural Networks for Bilingual Handwritten Digit Recognition -- Chapter 4: Incorporating the Markov Chain Model in WBSN for Improving Patients Remote Monitoring Systems -- Chapter 5: Designing Deep Neural Network with Chicken Swarm Optimization for Violence Video Classification using VSD2014 Dataset -- Chapter 6: Header Based Email Spam Detection Framework Using Support Vector Machine (SVM) Technique -- Chapter 7: A Mechanism to Support Agile Frameworks Enhancing Reliability Assessment for SCS Development: A Case Study of Medical Surgery Departments -- Chapter 8: Link Bandwidth Recommendation for Indonesian E-Health Grid -- Chapter 9: Investigating the Optimal Parameterization of Deep Neural Network and Synthetic Data Workflow for Imbalance Liver Disorder Dataset Classification -- Chapter 10: Genetic Algorithm Based Parallel K-Means Data Clustering Algorithm Using MapReduce Programming Paradigm on Hadoop Environment (GAPKCA) -- Chapter 11: Android Botnet Detection by Classification Techniques", "staffOnly": false, "instanceNoteTypeId": "5ba8e385-0e27-462e-a571-ffa1fa34ea54" }, { "note": "This book provides an introduction to data science and offers a practical overview of the concepts and techniques that readers need to get the most out of their large-scale data mining projects and research studies. It discusses data-analytical thinking, which is essential to extract useful knowledge and obtain commercial value from the data. Also known as data-driven science, soft computing and data mining disciplines cover a broad interdisciplinary range of scientific methods and processes. The book provides readers with sufficient knowledge to tackle a wide range of issues in complex systems, bringing together the scopes that integrate soft computing and data mining in various combinations of applications and practices, since to thrive in these data-driven ecosystems, researchers, data analysts and practitioners must understand the design choice and options of these approaches. This book helps readers to solve complex benchmark problems and to better appreciate the concepts, tools and techniques used", "staffOnly": false, "instanceNoteTypeId": "10e2e11b-450f-45c8-b09b-0f819999966e" } ], "title": "Recent advances on soft computing and data mining : Proceedings of the Fourth International Conference on Soft Computing and Data Mining (SCDM 2020), Melaka, Malaysia, January 22-23 2020 / Rozaida Ghazali, Nazri Mohd Nawi, Mustafa Mat Deris, Jemal H. Abawajy, editors.", "series": [ "Advances in Intelligent Systems and Computing Ser. ; 978", "Advances in intelligent systems and computing ; 978" ], "source": "MARC", "_version": 1, "editions": [ ], "metadata": { "createdDate": "2023-08-21T20:17:09.702Z", "updatedDate": "2023-08-21T20:17:09.702Z", "createdByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766", "updatedByUserId": "58d0aaf6-dcda-4d5e-92da-012e6b7dd766" }, "statusId": "9634a5ab-9228-4703-baf2-4d12ebc77d56", "subjects": [ "Soft computing Congresses", "Data mining Congresses", "Evolutionary computation Congresses", "Pattern recognition systems Congresses", "Human-computer interaction Congresses", "Informatique douce Congrès", "Exploration de données (Informatique) Congrès", "Réseaux neuronaux à structure évolutive Congrès", "Reconnaissance des formes (Informatique) Congrès", "Data mining", "Evolutionary computation", "Human-computer interaction", "Pattern recognition systems", "Soft computing" ], "languages": [ "eng" ], "indexTitle": "Recent advances on soft computing and data mining : proceedings of the fourth international conference on soft computing and data mining (scdm 2020), melaka, malaysia, january 22-23 2020", "identifiers": [ { "value": "(Sirsi) a13574136", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" }, { "value": "9783030360566 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "3030360563 (electronic bk.)", "identifierTypeId": "8261054f-be78-422d-bd51-4ed9f33c3422" }, { "value": "9783030360559 (print)", "identifierTypeId": "fcca2643-406a-482a-b760-7a7f8aec640e" }, { "value": "10.1007/978-3-030-36", "identifierTypeId": "2e8b3b6c-0e7d-4e48-bca2-b0b23b376af5" }, { "value": "10.1007/978-3-030-36", "identifierTypeId": "ebfd00b6-61d3-4d87-a6d8-810c941176d5" }, { "value": "10.1007/978-3-030-36", "identifierTypeId": "1795ea23-6856-48a5-a772-f356e16a8a6c" }, { "value": "(OCoLC)1130899732", "identifierTypeId": "439bfbae-75bc-4f74-9fc7-b2a2d47ce3ef" }, { "value": "(OCoLC)1137845886", "identifierTypeId": "fc4e3f2a-887a-46e5-8057-aeeb271a4e56" }, { "value": "(Sirsi) spon1130899732", "identifierTypeId": "7e591197-f335-4afb-bc6d-a6d76ca3bace" } ], "publication": [ { "place": "Cham", "publisher": "Springer", "dateOfPublication": "2020" } ], "contributors": [ { "name": "SCDM (Conference) (4th : 2020 : Melaka, Malaysia)", "primary": true, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "e8b311a6-3b21-43f2-a269-dd9310cb2d0a" }, { "name": "Ghazali, Rozaida", "primary": false, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Nawi, Nazri Mohd", "primary": false, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Deris, Mustafa Mat", "primary": false, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" }, { "name": "Abawajy, Jemal H., 1982-", "primary": false, "contributorTypeId": "9f0a2cf0-7a9b-45a2-a403-f68d2850d07c", "contributorNameTypeId": "2b94c631-fca9-4892-a730-03ee529ffe2a" } ], "catalogedDate": "2020-05-02", "staffSuppress": false, "instanceTypeId": "6312d172-f0cf-40f6-b27d-9fa8feaf332f", "previouslyHeld": false, "classifications": [ { "classificationNumber": "QA76.9.S63", "classificationTypeId": "ce176ace-a53e-4b4d-aa89-725ed7b2edac" }, { "classificationNumber": "006.3", "classificationTypeId": "42471af9-7d25-4f3a-bf78-60d29dcf463b" } ], "instanceFormats": [ ], "electronicAccess": [ { "uri": "https://link.springer.com/10.1007/978-3-030-36056-6", "name": "Resource", "linkText": "SpringerLink", "publicNote": "Available to Stanford-affiliated users", "relationshipId": "f5d0068e-6272-458e-8a81-b85e7b9a14aa" } ], "holdingsRecords2": [ ], "modeOfIssuanceId": "9d18a02f-5897-4c31-9106-c9abb5c7ae8b", "publicationRange": [ ], "statisticalCodes": [ ], "alternativeTitles": [ { "alternativeTitle": "SCDM 2020", "alternativeTitleTypeId": "35bbe7f2-1a49-11ed-861d-0242ac120002" } ], "discoverySuppress": false, "instanceFormatIds": [ "f5e8210f-7640-459b-a71f-552567f92369" ], "publicationPeriod": { "start": 2020 }, "statusUpdatedDate": "2023-08-21T20:17:09.692+0000", "statisticalCodeIds": [ ], "administrativeNotes": [ ], "physicalDescriptions": [ "1 online resource (491 pages)" ], "publicationFrequency": [ ], "suppressFromDiscovery": false, "natureOfContentTermIds": [ ] }, "holdingSummaries": [ { "poLineId": null, "orderType": null, "orderStatus": null, "poLineNumber": null, "orderSentDate": null, "orderCloseReason": null, "polReceiptStatus": null } ] }