1 - 20
Next
1. Perturbed semi-Markov type processes. I, Limit theorems for rare-event times and processes [2022]
- Silʹvestrov, D. S. (Dmitriĭ Sergeevich), author.
- Cham : Springer, [2022]
- Description
- Book — 1 online resource (xvii, 401 pages) : illustrations (some color)
- Summary
-
- Preface.- List of symbols.- Introduction.- Part I: First-Rare-Event Times for Regularly Perturbed Semi-Markov Processes.- Flows of Rare Events for Regularly Perturbed Semi-Markov Processes.- Generalizations of Limit Theorems for First-Rare-Event Times.- First-Rare-Event Times for Perturbed Risk Processes.- First-Rare-Event Times for Perturbed Closed Queuing Systems.- First-Rare-Event Times for Perturbed M/M-Type Queuing Systems.- Part II: Hitting Times and Phase Space Reduction for Perturbed Semi-Markov Processes.- Asymptotically Comparable Functions.- Perturbed Semi-Markov Processes and Reduction of Phase Space.- Asymptotics of Hitting Times for Perturbed Semi-Markov Processes.- Asymptotics for Expectations of Hitting Times for Perturbed Semi-Markov Processes.- Generalizations and Examples of Limit Theorems for Hitting Times.- Limit Theorems for Randomly Stopped Stochastic Processes.- Methodological and Bibliographical Notes.- References.- Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Cocozza-Thivent, Christiane, author.
- Cham : Springer, [2021]
- Description
- Book — 1 online resource : illustrations (some color)
- Summary
-
- Tools.- Markov renewal processes and related processes.- First steps with PDMP.- Hitting time distribution.- Intensity of some marked point pocesses.- Generalized Kolmogorov equations.- A martingale approach.- Stability.- Numerical methods.- Switching Processes.- Tools.- Interarrival distribution with several Dirac measures.- Algorithm convergence's proof.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Pogorui, Anatoliy, author.
- London : ISTE, Ltd. ; Hoboken, NJ : Wiley, 2021.
- Description
- Book — 1 online resource
- Summary
-
- Preface ix
- Acknowledgments xiii
- Introduction xv
- Part 1. Basic Methods 1
- Chapter 1. Preliminary Concepts 3
- 1.1. Introduction to random evolutions 3
- 1.2. Abstract potential operators 7
- 1.3. Markov processes: operator semigroups 11
- 1.4. Semi-Markov processes 14
- 1.5. Lumped Markov chains 17
- 1.6. Switched processes in Markov and semi-Markov media 19
- Chapter 2. Homogeneous Random Evolutions (HRE) and their Applications 23
- 2.1. Homogeneous random evolutions (HRE) 24
- 2.1.1. Definition and classification of HRE 24
- 2.1.2. Some examples of HRE 25
- 2.1.3. Martingale characterization of HRE 28
- 2.1.4. Analogue of Dynkin's formula for HRE 34
- 2.1.5. Boundary value problems for HRE 36
- 2.2. Limit theorems for HRE 37
- 2.2.1. Weak convergence of HRE 37
- 2.2.2. Averaging of HRE 39
- 2.2.3. Diffusion approximation of HRE 42
- 2.2.4. Averaging of REs in reducible phase space: merged HRE 45
- 2.2.5. Diffusion approximation of HRE in reducible phase space 48
- 2.2.6. Normal deviations of HRE 51
- 2.2.7. Rates of convergence in the limit theorems for HRE 53
- Part 2. Applications to Reliability, Random Motions, and Telegraph Processes 57
- Chapter 3. Asymptotic Analysis for Distributions of Markov, Semi-Markov and Random Evolutions 59
- 3.1. Asymptotic distribution of time to reach a level that is infinitely increasing by a family of semi-Markov processes on the set ? 61
- 3.2. Asymptotic inequalities for the distribution of the occupation time of a semi-Markov process in an increasing set of states 74
- 3.3. Asymptotic analysis of the occupation time distribution of an embedded semi-Markov process (with increasing states) in a diffusion process 77
- 3.4. Asymptotic analysis of a semigroup of operators of the singularly perturbed random evolution in semi-Markov media 82
- 3.5. Asymptotic expansion for distribution of random motion in Markov media under the Kac condition 90
- 3.5.1. The equation for the probability density of the particle position performing a random walk in ?n 90
- 3.5.2. Equation for the probability density of the particle position 91
- 3.5.3. Reduction of a singularly perturbed evolution equation to a regularly perturbed equation 93
- 3.6. Asymptotic estimation for application of the telegraph process as an alternative to the diffusion process in the Black-Scholes formula 96
- 3.6.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in case of disbalance 96
- 3.6.2. Application to an economic model of stock market 100
- Chapter 4. Random Switched Processes with Delay in Reflecting Boundaries 103
- 4.1. Stationary distribution of evolutionary switched processes in a Markov environment with delay in reflecting boundaries 104
- 4.2. Stationary distribution of switched process in semi-Markov media with delay in reflecting barriers 109
- 4.2.1. Infinitesimal operator of random evolution with semi-Markov switching 110
- 4.2.2. Stationary distribution of random evolution in semi-Markov media with delaying boundaries in balance case 113
- 4.2.3. Stationary distribution of random evolution in semi-Markov media with delaying boundaries 121
- 4.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer: the Markov case 124
- 4.3.1. Introduction 124
- 4.3.2. Stationary distribution of Markov stochastic evolutions 125
- 4.3.3. Stationary efficiency of a system with two unreliable subsystems in cascade and one buffer 129
- 4.3.4. Mathematical model 131
- 4.3.5. Main mathematical results 133
- 4.3.6. Numerical results for the symmetric case 138
- 4.4. Application of random evolutions with delaying barriers to modelling control of supply systems with feedback: the semi-Markov switching process 141
- 4.4.1. Estimation of stationary efficiency of one-phase system with a reservoir 141
- 4.4.2. Estimation of stationary efficiency of a production system with two unreliable supply lines 149
- Chapter 5. One-dimensional Random Motions in Markov and Semi-Markov Media 159
- 5.1. One-dimensional semi-Markov evolutions with general Erlang sojourn times 160
- 5.1.1. Mathematical model 160
- 5.1.2. Solution of PDEs with constant coefficients and derivability of functions ranged in commutative algebras 168
- 5.1.3. Infinite-dimensional case 171
- 5.1.4. The distribution of one-dimensional random evolutions in Erlang media 172
- 5.2. Distribution of limiting position of fading evolution 181
- 5.2.1. Distribution of random power series in cases of uniform and Erlang distributions 182
- 5.2.2. The distribution of the limiting position 190
- 5.3. Differential and integral equations for jump random motions 191
- 5.3.1. The Erlang jump telegraph process on a line 192
- 5.3.2. Examples 198
- 5.4. Estimation of the number of level crossings by the telegraph process 199
- 5.4.1. Estimation of the number of level crossings for the telegraph process in Kac's condition 202
- References 205
- Index 219
- Summary of Volume 2 221.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Pogorui, Anatoliy.
- London : ISTE Ltd. ; Hoboken, NJ : Wiley, 2021.
- Description
- Book — 1 online resource
- Summary
-
- Preface ix
- Acknowledgments xiii
- Introduction xv
- Part 1. Higher-dimensional Random Motions and Interactive Particles 1
- Chapter 1. Random Motions in Higher Dimensions 3
- 1.1. Random motion at finite speed with semi-Markov switching directions process 5
- 1.1.1. Erlang-K-distributed direction alternations 7
- 1.1.2. Some properties of the random walk in a semi-Markov environment and its characteristic function 15
- 1.2. Random motion with uniformly distributed directions and random velocity 17
- 1.2.1. Renewal equation for the characteristic function of isotropic motion with random velocity in a semi-Markov media 17
- 1.2.2. One-dimensional case 20
- 1.2.3. Two-dimensional case 23
- 1.2.4. Three-dimensional case 23
- 1.2.5. Four-dimensional case 31
- 1.3. The distribution of random motion at non-constant velocity in semi-Markov media 32
- 1.3.1. Renewal equation for the characteristic function 34
- 1.3.2. Two-dimensional case 35
- 1.3.3. Three-dimensional case 37
- 1.3.4. Four-dimensional case 40
- 1.4. Goldstein-Kac telegraph equations and random flights in higher dimensions 43
- 1.4.1. Preliminaries about our modeling approach 45
- 1.4.2. Two-dimensional case 48
- 1.4.3. Three-dimensional case 51
- 1.4.4. Five-dimensional case 59
- 1.5. The jump telegraph process in Rn 62
- 1.5.1. The jump telegraph process in R3 63
- 1.5.2. Conclusions and final remarks 64
- Chapter 2. System of Interactive Particles with Markov and Semi-Markov Switching 67
- 2.1. Description of the Markov model 68
- 2.1.1. Distribution of the first meeting time of two telegraph processes 69
- 2.1.2. Estimate of the number of particle collisions 74
- 2.1.3. Free path times of a family of particles 76
- 2.1.4. Estimation of the number of particle collisions for systems with boundaries 78
- 2.1.5. Estimation of the number of particle collisions for systems without boundaries 83
- 2.2. Interaction of particles governed by generalized integrated telegraph processes: a semi-Markov case 87
- 2.2.1. Laplace transform of the distribution of the first collision of two particles 88
- 2.2.2. Semi-Markov case 91
- 2.2.3. Distribution of the first collision of two particles with finite expectation 95
- Part 2. Financial Applications 99
- Chapter 3. Asymptotic Estimation for Application of the Telegraph Process as an Alternative to the Diffusion Process in the Black-Scholes Formula 101
- 3.1. Asymptotic expansion for the singularly perturbed random evolution in Markov media in the case of disbalance 101
- 3.2. Application: Black-Scholes formula 106
- Chapter 4. Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Markov-modulated Volatilities 111
- 4.1. Volatility derivatives 111
- 4.1.1. Types of volatilities 111
- 4.1.2. Models for volatilities 113
- 4.1.3. Variance and volatility swaps 115
- 4.1.4. Covariance and correlation swaps 116
- 4.1.5. A brief literature review 117
- 4.2. Martingale representation of a Markov process 118
- 4.3. Variance and volatility swaps for financial markets with Markov-modulated stochastic volatilities 122
- 4.3.1. Pricing variance swaps 124
- 4.3.2. Pricing volatility swaps 124
- 4.4. Covariance and correlation swaps for two risky assets for financial markets with Markov-modulated stochastic volatilities 128
- 4.4.1. Pricing covariance swaps 128
- 4.4.2. Pricing correlation swaps 130
- 4.4.3. Correlation swap made simple 130
- 4.5. Example: variance, volatility, covariance and correlation swaps for stochastic volatility driven by two state continuous Markov chain 132
- 4.6. Numerical example 134
- 4.6.1. S&P 500: variance and volatility swaps 134
- 4.6.2. S&P 500 and NASDAQ-100: covariance and correlation swaps 135
- 4.7. Appendix 1 138
- 4.7.1. Correlation swaps: first-order correction 138
- Chapter 5. Modeling and Pricing of Variance, Volatility, Covariance and Correlation Swaps for Financial Markets with Semi-Markov Volatilities 143
- 5.1. Introduction 143
- 5.2. Martingale representation of semi-Markov processes 148
- 5.3. Variance and volatility swaps for financial markets with semi-Markov stochastic volatilities 151
- 5.3.1. Pricing of variance swaps 153
- 5.3.2. Pricing of volatility swaps 155
- 5.3.3. Numerical evaluation of variance and volatility swaps with semi-Markov volatility 158
- 5.4. Covariance and correlation swaps for two risky assets in financial markets with semi-Markov stochastic volatilities 159
- 5.4.1. Pricing of covariance swaps 160
- 5.4.2. Pricing of correlation swaps 162
- 5.5. Numerical evaluation of covariance and correlation swaps with semi-Markov stochastic volatility 164
- 5.6. Appendices 165
- 5.6.1. Appendix 1. Realized correlation: first-order correction 165
- 5.6.2. Appendix 2. Discussions of some extensions 169
- References 177
- Index 191
- Summary of Volume 1 193.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Brémaud, Pierre.
- 2nd ed. - Cham : Springer, 2020.
- Description
- Book — 1 online resource (564 pages)
- Summary
-
- Preface.- 1 Probability Review.- 2 Discrete-Time Markov Chains.- 3 Recurrence and Ergodicity.- 4 Long-Run Behavior.- 5 Discrete-Time Renewal Theory.- 6 Absorption and Passage Times.- 7 Lyapunov Functions and Martingales.- 8 Random Walks on Graphs.- 9 Convergence Rates.- 10 Markov Fields on Graphs.- 11 Monte Carlo Markov Chains.- 12 Non-homogeneous Markov Chains.- 13 Continuous-Time Markov Chains.- 14 Markovian Queueing Theory.- Appendices.- Bibliography.- Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Grabski, Franciszek, author.
- First edition. - Waltham, MA : Elsevier, [2015]
- Description
- Book — 1 online resource (1 volume) : illustrations
- Summary
-
- PREFACE NOTATIONS LIST OF FIGURES LIST OF TABLES 1.RANDOM PROCESS 2.DISCRETE STATE SPACE MARKOV PROCESSES 3.SEMI-MARKOV PROCESS 4.CHARACTERISTICS OF SEMI-MARKOV PROCESS 5.PERTURBED SEMI-MARKOV PROCESSES 6.STOCHASTIC PROCESSES ASSOCIATED WITH SEMI-MARKOV PROCESS 7.MODELS OF RENEWABLE COLD STANDBY SYSTEM WITH REPAIR 8.SEMI-MARKOV MODELS OF MULTI-STAGE OPERATION 9.SEMI-MARKOV MODEL OF WORKING RATE PROCESS 10.MULTI-TASK OPERATION PROCESS 11.SEMI-MARKOV FAILURE RATE PROCESS 12.MODEL OF RENEWABLE SERIES SYSTEM 13.SIMPLE MODELS OF MAINTENANCE 14.MULTI-STATE PROCESS OF SYSTEM DAMAGE 15.MULTI-STATE SYSTEM WITH SEMI-MARKOV COMPONENTS 16.SEMI-MARKOV MAINTENANCE NET 17.SEMI-MARKOV DECISION PROCESSES 18.APPENDIX SUMMARY BIBLIOGRAPHY.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Brémaud, Pierre.
- 2ieme éd., entièrement révisée. - Berlin : Springer, ©2009.
- Description
- Book — 1 online resource (viii, 309 pages) : illustrations
- Summary
-
- Introduction
- 1 La notion de probabilité.-2 Variables aléatoires discrètes
- 2 Vecteurs aléatoires
- 4 Espérance conditionnelle
- 5 Information et entropie.
- 6 L'espérance comme intégrale
- 7 Suites de variablesaléatoires
- 8 Chaînes de Markov
- Solutions des exercices.-Bibliographie
- Index.
- Montenegro, Ravi R.
- Boston, MA : Now Publishers, ©2006.
- Description
- Book — ix, 121 pages : illustrations ; 24 cm
- Summary
-
- 1 Introduction 2 Basic Bounds on Mixing Times 3 Advanced Functional Techniques 4 Evolving Set Methods 5 Lower Bounds on Mixing Times and their Consequences 6 Examples 7 Miscellaneous 8 Open Problems Acknowledgements References Appendix.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
QA274.7 .M665 2006 | Available |
- Modica, Giuseppe.
- Chichester : Wiley, 2013.
- Description
- Book — 1 online resource
- Summary
-
- Preface xi
- 1 Combinatorics 1 1.1 Binomial coefficients 1 1.1.1 Pascal triangle 1 1.1.2 Some properties of binomial coefficients 2 1.1.3 Generalized binomial coefficients and binomial series 3 1.1.4 Inversion formulas 4 1.1.5 Exercises 6 1.2 Sets, permutations and functions 8 1.2.1 Sets 8 1.2.2 Permutations 8 1.2.3 Multisets 10 1.2.4 Lists and functions 11 1.2.5 Injective functions 12 1.2.6 Monotone increasing functions 12 1.2.7 Monotone nondecreasing functions 13 1.2.8 Surjective functions 14 1.2.9 Exercises 16 1.3 Drawings 16 1.3.1 Ordered drawings 16 1.3.2 Simple drawings 17 1.3.3 Multiplicative property of drawings 17 1.3.4 Exercises 18 1.4 Grouping 19 1.4.1 Collocations of pairwise different objects 19 1.4.2 Collocations of identical objects 22 1.4.3 Multiplicative property 23 1.4.4 Collocations in statistical physics 24 1.4.5 Exercises 24
- 2 Probability measures 27 2.1 Elementary probability 28 2.1.1 Exercises 29 2.2 Basic facts 33 2.2.1 Events 34 2.2.2 Probability measures 36 2.2.3 Continuity of measures 37 2.2.4 Integral with respect to a measure 39 2.2.5 Probabilities on finite and denumerable sets 40 2.2.6 Probabilities on denumerable sets 42 2.2.7 Probabilities on uncountable sets 44 2.2.8 Exercises 46 2.3 Conditional probability 51 2.3.1 Definition 51 2.3.2 Bayes formula 52 2.3.3 Exercises 54 2.4 Inclusion exclusion principle 60 2.4.1 Exercises 63
- 3 Random variables 68 3.1 Random variables 68 3.1.1 Definitions 69 3.1.2 Expected value 75 3.1.3 Functions of random variables 77 3.1.4 Cavalieri formula 80 3.1.5 Variance 82 3.1.6 Markov and Chebyshev inequalities 82 3.1.7 Variational characterization of the median and of the expected value 83 3.1.8 Exercises 84 3.2 A few discrete distributions 91 3.2.1 Bernoulli distribution 91 3.2.2 Binomial distribution 91 3.2.3 Hypergeometric distribution 93 3.2.4 Negative binomial distribution 94 3.2.5 Poisson distribution 95 3.2.6 Geometric distribution 98 3.2.7 Exercises 101 3.3 Some absolutely continuous distributions 102 3.3.1 Uniform distribution 102 3.3.2 Normal distribution 104 3.3.3 Exponential distribution 106 3.3.4 Gamma distributions 108 3.3.5 Failure rate 110 3.3.6 Exercises 111
- 4 Vector valued random variables 113 4.1 Joint distribution 113 4.1.1 Joint and marginal distributions 114 4.1.2 Exercises 117 4.2 Covariance 120 4.2.1 Random variables with finite expected value and variance 120 4.2.2 Correlation coefficient 123 4.2.3 Exercises 123 4.3 Independent random variables 124 4.3.1 Independent events 124 4.3.2 Independent random variables 127 4.3.3 Independence of many random variables 128 4.3.4 Sum of independent random variables 130 4.3.5 Exercises 131 4.4 Sequences of independent random variables 140 4.4.1 Weak law of large numbers 140 4.4.2 Borel Cantelli lemma 142 4.4.3 Convergences of random variables 143 4.4.4 Strong law of large numbers 146 4.4.5 A few applications of the law of large numbers 152 4.4.6 Central limit theorem 159 4.4.7 Exercises 163
- 5 Discrete time Markov chains 168 5.1 Stochastic matrices 168 5.1.1 Definitions 169 5.1.2 Oriented graphs 170 5.1.3 Exercises 172 5.2 Markov chains 173 5.2.1 Stochastic processes 173 5.2.2 Transition matrices 174 5.2.3 Homogeneous processes 174 5.2.4 Markov chains 174 5.2.5 Canonical Markov chains 178 5.2.6 Exercises 181 5.3 Some characteristic parameters 187 5.3.1 Steps for a first visit 187 5.3.2 Probability of (at least) r visits 189 5.3.3 Recurrent and transient states 191 5.3.4 Mean first passage time 193 5.3.5 Hitting time and hitting probabilities 195 5.3.6 Exercises 198 5.4 Finite stochastic matrices 201 5.4.1 Canonical representation 201 5.4.2 States classification 203 5.4.3 Exercises 205 5.5 Regular stochastic matrices 206 5.5.1 Iterated maps 206 5.5.2 Existence of fixed points 209 5.5.3 Regular stochastic matrices 210 5.5.4 Characteristic parameters 218 5.5.5 Exercises 220 5.6 Ergodic property 222 5.6.1 Number of steps between consecutive visits 222 5.6.2 Ergodic theorem 224 5.6.3 Powers of irreducible stochastic matrices 226 5.6.4 Markov chain Monte Carlo 228 5.7 Renewal theorem 233 5.7.1 Periodicity 233 5.7.2 Renewal theorem 234 5.7.3 Exercises 239
- 6 An introduction to continuous time Markov chains 241 6.1 Poisson process 241 6.2 Continuous time Markov chains 246 6.2.1 Definitions 246 6.2.2 Continuous semigroups of stochastic matrices 248 6.2.3 Examples of right-continuous Markov chains 256 6.2.4 Holding times 259 Appendix A Power series 261 A.1 Basic properties 261 A.2 Product of series 263 A.3 Banach space valued power series 264 A.3.2 Exercises 267 Appendix B Measure and integration 270 B.1 Measures 270 B.1.1 Basic properties 270 B.1.2 Construction of measures 272 B.1.3 Exercises 279 B.2 Measurable functions and integration 279 B.2.1 Measurable functions 280 B.2.2 The integral 283 B.2.3 Properties of the integral 284 B.2.4 Cavalieri formula 286 B.2.5 Markov inequality 287 B.2.6 Null sets and the integral 287 B.2.7 Push forward of a measure 289 B.2.8 Exercises 290 B.3 Product measures and iterated integrals 294 B.3.1 Product measures 294 B.3.2 Reduction formulas 296 B.3.3 Exercises 297 B.4 Convergence theorems 298 B.4.1 Almost everywhere convergence 298 B.4.2 Strong convergence 300 B.4.3 Fatou lemma 301 B.4.4 Dominated convergence theorem 302 B.4.5 Absolute continuity of integrals 305 B.4.6 Differentiation of the integral 305 B.4.7 Weak convergence of measures 308 B.4.8 Exercises 312 Appendix C Systems of linear ordinary differential equations 313 C.1 Cauchy problem 313 C.1.1 Uniqueness 313 C.1.2 Existence 315 C.2 Efficient computation of eQt 317 C.2.1 Similarity methods 317 C.2.2 Putzer method 319 C.3 Continuous semigroups 321 References 324 Index 327.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Markov Anniversary Meeting (2006 : Charleston, S.C.)
- Raleigh, N.C. : Boson Books, ©2006.
- Description
- Book — 1 online resource
- Summary
-
- Preface; Program Committee;
- 1. Seneta;
- 2. Burrage et. al.;
- 3. Cloth and Haverkort;
- 4. Marie;
- 5. Latouche;
- 6. Spaey, Houdt and Blondia;
- 7. Vuuren and Adan;
- 8. Tian and Perros;
- 9. Dopper, Gaujal and Vincent;
- 10. Horvath and Telek;
- 11. Hilgers and Langville;
- 12. Da Silva and Rubino;
- 13. Mamoun, Busic, Fourneau and Pekergin;
- 14. Dayar et. al.;
- 15. Langville and Meyer;
- 16. Benzi and Ucar;
- 17. Tancrez and Semal;
- 18. Kirkland;
- 19. Dayar;
- 20. Sbeity and Plateau;
- 21. Kumar;
- 22. Caswell.
- Chung, Kai Lai, 1917-2009.
- 2d ed. - Berlin, New York, Springer, 1967.
- Description
- Book — 1 online resource (x, 301 pages) Digital: text file.PDF.
- Summary
-
- I. Discrete Parameter
- § 1. Fundamental definitions
- § 2. Transition probabilities
- § 3. Classification of states
- § 4. Recurrence
- § 5. Criteria and examples
- § 6. The main limit theorem
- § 7. Various complements
- § 8. Repetitive pattern and renewal process
- § 9. Taboo probabilities
- § 10. The generating function
- § 11. The moments of first entrance time distributions
- § 12. A random walk example
- § 13. System theorems
- § 14. Functionals and associated random variables
- § 15. Ergodic theorems
- § 16. Further limit theorems
- § 17. Almost closed and sojourn sets
- II. Continuous Parameter
- § 1. Transition matrix: basic properties
- § 2. Standard transition matrix
- § 3. Differentiability
- § 4. Definitions and measure-theoretic foundations
- § 5. The sets of constancy
- § 6. Continuity properties of sample functions
- § 7. Further specifications of the process
- § 8. Optional random variable
- § 9. Strong Markov property
- § 10. Classification of states
- § 11. Taboo probability functions
- § 12. Last exit time
- § 13. Ratio limit theorems; discrete approximations
- § 14. Functionals
- § 15. Post-exit process
- § 16. Imbedded renewal process
- § 17. The two systems of differential equations
- § 18. The minimal solution
- § 19. The first infinity
- § 20. Examples.
- Tveito, Aslak, 1961- author.
- Switzerland : SpringerOpen, 2016.
- Description
- Book — 1 online resource (xvi, 261 pages) : illustrations (some color)
- Summary
-
- Background : problem and methods
- One-dimensional calcium release
- Models of open and state blockers
- Properties of probability density functions
- Two-dimensional calcium release
- Computing theoretical drugs in the two-dimensional case
- Generalized systems governing probability density functions
- Calcium-induced calcium release
- Numerical drugs for calcium-induced calcium release
- A prototypical model of an ion channel
- Inactivated ion channels : extending the prototype model
- A simple model of the sodium channel
- Mutations affecting the mean open time
- The burst mode of the mutant sodium channel
- Action potentials : summing up the effect of loads of ion channels.
- Silʹvestrov, D. S. (Dmitriĭ Sergeevich), author.
- Cham : Springer, [2022]
- Description
- Book — 1 online resource : illustrations (some color)
- Summary
-
- Preface.- List of symbols.- Introduction.- Part I: Ergodic Theorems for Perturbed Alternating Regenerative Processes.- Ergodic Theorems for Perturbed Regenerative Processes.- Perturbed Alternating Regenerative Processes.- Ergodic Theorems for Regularly Perturbed Alternating Regenerative Processes.- Ergodic Theorems for Regularly Perturbed Alternating Regenerative Processes Compressed in Time.- Super-Long and Long Time Ergodic Theorems for Singularly Perturbed Alternating Regenerative Processes.- Short Time Ergodic Theorems for Singularly Perturbed Alternating Regenerative Processes.- Ergodic Theorems for Singularly Perturbed Alternating Regenerative Processes Compressed in Time.- Ergodic Theorems for Super-Singularly Perturbed Alternating Regenerative Processes.- Part II: Ergodic Theorems for Perturbed Multi-Alternating Regenerative Processes.- Perturbed Multi-Alternating Regenerative Processes.- Time-Space Aggregation of Regeneration Times for Perturbed Multi-Alternating Regenerative Processes.- Embedded Processes for Perturbed Multi-Alternating Regenerative Processes.- Ergodic Theorems for Perturbed Multi-Alternating Regenerative Processes.- Perturbed Renewal Equation.- Supplementary Asymptotic Results.- Methodological and Bibliography Notes.- References.- Index.- .
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
14. Markov processes for stochastic modeling [2013]
- Ibe, Oliver C. (Oliver Chukwudi), 1947- author.
- Second edition. - London : Elsevier, 2013.
- Description
- Book — 1 online resource (xviii, 494 pages).
- Summary
-
- Chapter 1: Basic Concepts
- Chapter 2: Introduction to Markov Processes
- Chapter 3: Discrete-Time Markov Chains
- Chapter 4: Continuous-Time Markov Chains
- Chapter 5: Markovian Queueing Systems
- Chapter 6: Markov Renewal Processes
- Chapter 7: Markovian Arrival Processes
- Chapter 8: Random Walk
- Chapter 9: Brownian Motion and Diffusion Processes
- Chapter 10: Controlled Markov Processes
- Chapter 11: Hidden Markov Models
- Chapter 12: Markov Point Processes.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Mustererkennung mit Markov-Modellen. English
- Fink, Gernot A.
- Berlin ; New York : Springer, 2008.
- Description
- Book — xii, 248 p. : ill. ; 24 cm.
- Summary
-
- 1. Introduction1.1 Thematic Context1.2 Capabilities of Markov Models1.3 Goal and Structure
- 2. Application Areas2.1 Speech2.2 Handwriting2.3 Biological Sequences2.4 Outlook Part I: Theory
- 3. Foundations of Mathematical Statistics3.1 Experiment, Event, and Probability3.2 Random Variables and Probability Distributions3.3 Parameters of Probability Distributions3.4 Normal Distributions and Mixture Density Models3.5 Stochastic Processes and Markov Chains3.6 Principles of Parameter Estimation3.7 Bibliographical Remarks
- 4. Vector Quantisation4.1 Definition4.2 Optimality4.3 Algorithms for Vector Quantiser Design (LLoyd, LBG, k-means)4.4 Estimation of Mixture Density Models4.5 Bibliographical Remarks
- 5. Hidden-Markov Models5.1 Definition5.2 Modeling of Output Distributions5.3 Use-Cases5.4 Notation5.5 Scoring (Forward algorithm)5.6 Decoding (Viterbi algorithm)5.7 Parameter Estimation (Forward-backward algorithm, Baum-Welch, Viterbi, and segmental k-means training)5.8 Model Variants5.9 Bibliographical Remarks
- 6. n-Gram Models6.1 Definition6.2 Use-Cases6.3 Notation6.4 Scoring6.5 Parameter Estimation (discounting, interpolation and backing-off)6.6 Model Variants (categorial models, long-distance dependencies)6.7 Bibliographical Remarks Part II: Practical Aspects
- 7. Computations with Probabilities7.1 Logarithmic Probability Representation7.2 Flooring of Probabilities7.3 Codebook Evaluation in Tied-Mixture Models7.4 Likelihood Ratios
- 8. Configuration of Hidden-Markov Models8.1 Model Topologies8.2 Sub-Model Units8.3 Compound Models8.4 Profile-HMMs8.5 Modelling of Output Probability Densities
- 9. Robust Parameter Estimation9.1 Optimization of Feature Representations (Principle component analysis, whitening, linear discriminant analysis)9.2 Tying (of model parameters, especially: mixture tying)9.3 Parameter Initialization
- 10. Efficient Model Evaluation10.1 Efficient Decoding of Mixture Densities10.2 Beam Search10.3 Efficient Parameter Estimation (forward-backward pruning, segmental Baum-Welch, training of model hierarchies)10.4 Tree-based Model Representations
- 11. Model Adaptation11.1 Foundations of Adaptation11.2 Adaptation of Hidden-Markov Models (Maximum-likelihood linear regression)11.3 Adaptation of n-Gram Models (cache models, dialog-step dependent models, topic-based language models)
- 12. Integrated Search12.1 HMM Networks12.2 Multi-pass Search Strategies12.3 Search-Space Copies (context and time-based tree copying strategies, language model look-ahead)12.4 Time-synchronous Integrated Decoding Part III: Putting it All Together
- 13. Speech Recognition13.1 Application-Specific Processing (feature extraction, vocal tract length normalization, ...)13.2 Systems (e.g. BBN Byblos, SPHINX III, ...)
- 14. Text Recognition14.1 Application-Specific Processing (linearization of data representation for off-line applications, preprocessing, normalization, feature extraction)14.2 Systems for On-line Handwriting Recognition14.3 Systems for Off-line Handwriting Recognition
- 15. Analysis of Biological Sequences15.1 Representation of Biological Sequences15.2 Systems (HMMer, SAM, Meta-MEME).
- (source: Nielsen Book Data)
Engineering Library (Terman)
Engineering Library (Terman) | Status |
---|---|
Stacks | |
Q327 .F5613 2008 | Unknown |
- Gardner, Robert B., author.
- London, UK : Academic Press, an imprint of Elsevier, 2022.
- Description
- Book — 1 online resource.
- Summary
-
Inequalities for polynomials and their derivatives are very important in many areas of mathematics, as well as in other computational and applied sciences; in particular they play a fundamental role in approximation theory. Here, not only Extremal Problems and Inequalities of Markov-Bernstein Type for Algebraic Polynomials, but also ones for trigonometric polynomials and related functions, are treated in an integrated and comprehensive style in different metrics, both on general classes of polynomials and on important restrictive classes of polynomials. Primarily for graduate and PhD students, this book is useful for any researchers exploring problems which require derivative estimates. It is particularly useful for those studying inverse problems in approximation theory.
- Minjárez-Sosa, J. Adolfo.
- Cham : Springer, 2020.
- Description
- Book — 1 online resource Digital: text file.PDF.
- Summary
-
- Zero-sum Markov games.- Discounted optimality criterion.- Average payoff criterion.- Empirical approximation-estimation algorithms in Markov games.- Difference-equation games: examples.- Elements from analysis.- Probability measures and weak convergence.- Stochastic kernels.- Review on density estimation. .
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
18. Prócessus de Markov [1967]
- Meyer, Paul André.
- Berlin ; New York : Springer-Verlag, 1967.
- Description
- Book — 1 online resource (189 pages)
- Summary
-
- Theorie elementaire des processus de markov
- Semi-groupes de feller
- Processus de hunt, processus standard
- Reduites, mesures harmoniques.
- Delmas, Jean-François.
- Berlin ; New York : Springer, ©2006.
- Description
- Book — 1 online resource (xv, 431 pages) : illustrations Digital: text file.PDF.
- Summary
-
- Chaînes de Markov à temps discret
- Recuit simulé
- Gestions des approvisionnements
- Le processus de Galton-Watson
- Recherche de zones homogènes dans l'ADN
- Séquences exceptionnelles dans l'ADN
- Estimation du taux de mutation de l'ADN
- Chaînes de Markov à temps continu
- Files d'attente
- Éléments de fiabilité
- Lois de valeurs extrêmes
- Processus de coagulation et fragmentation.
20. An introduction to Markov processes [2014]
- Stroock, Daniel W., author.
- Second edition. - Berlin ; New York : Springer, 2014.
- Description
- Book — 1 online resource (xvii, 203 pages) Digital: text file.PDF.
- Summary
-
- Preface.- Random Walks, a Good Place to Begin.- Doeblin's Theory for Markov Chains.- Stationary Probabilities.- More about the Ergodic Theory of Markov Chains.- Markov Processes in Continuous Time.- Reversible Markov Processes.- A minimal Introduction to Measure Theory.- Notation.- References.- Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
Articles+
Journal articles, e-books, & other e-resources
Guides
Course- and topic-based guides to collections, tools, and services.