 Poljak, D. (Dragan), author.
 Hoboken, New Jersey : John Wiley & Sons, Inc., [2024]
 Description
 Book — 1 online resource (xviii, 551 pages) : chiefly color.
 Summary

 1. Least Action Principle in electromagnetics 2
 1.1. Hamilton principle 2
 1.2. Newton equation of motion from Lagrangian 5
 1.3. Noether's theorem and conservation laws 7
 1.4. Equation of continuity from Lagrangian 10
 1.5. Lorentz force from Gauge Invariance 14
 2. Fundamental Equations of Engineering Electromagnetics 17
 2.1. Derivation of two canonical Maxwell equation 17
 2.2. Derivation of two dynamical Maxwell equation 18
 2.3. Integral form of Maxwell equations, continuity equations and Lorentz force 21
 2.4. Phasor form of Maxwell equations 22
 2.4. Continuity (interface) conditions 24
 2.5. Poynting theorem 25
 3. Variational methods in electromagnetics 40
 3.1. Analytical methods 40
 3.2. Capacity of insulated charged sphere 40
 3.3. Spherical Grounding resistance 42
 3.4. Variational basis for numerical methods 43
 4. Outline of numerical methods 47
 4.1. Variational basis for numerical methods 50
 4.2. The Finite Element Method (FEM) 51
 4.2.1 Basic concepts of FEM  One dimensional FEM 52
 4.3.2 Linear and quadratic elements 74
 4.3.2 Quadratic elements 75
 4.3.4 Numerical solution of integral equations over unknown sources 76
 5. Wire Configurations  Frequency Domain Analysis 79
 5.1. Single wire in a presence of a lossy halfspace 79
 5.1.1 Horizontal dipole above a homogeneous lossy halfspace 79
 5.1.2 Horizontal dipole buried in a homogeneous lossy halfspace 84
 5.2 Horizontal dipole above a multilayered lossy halfspace 88
 5.2.1 Integral equation formulation 88
 5.2.2 Radiated field 93
 5.2.3 Numerical results 95
 5.3 Wire Array above a multilayer 114
 5.3.1. Formulation 116
 5.3.2 Numerical procedures 118
 5.3.3 Computational examples 120
 5.4. Wires of arbitrary shape radiating over a layered medium 137
 5.4.1. Curved single wire in free space 139
 5.4.2. Curved single wire in a presence of a lossy halfspace 140
 5.4.3. Multiple curved wires 142
 5.4.5. Electromagnetic field coupling to arbitrarily shaped aboveground wires 151
 5.4.5. Buried wires of arbitrary shape 161
 5.5. Complex Power of Arbitrarily Shaped Thin Wire Radiating above a Lossy Halfspace 168
 5.5.1. Theoretical background 169
 5.5.2. Numerical results 172
 6. Wire Configurations  Time Domain Analysis 185
 6.1 Single Wire above a Lossy Ground 186
 6.1.1. Case of perfectly conducting ground (PEC) gound and dielectric halfspace 190
 6.1.2 Modified reflection coefficient for the case of an imperfect ground 191
 6.2 Numerical solution of Hallen equation via GalerkinBubnov Indirect Boundary Element Method (GBIBEM) 199
 6.2.1 Computational examples 202
 6.3 Application to Ground penetrating Radar (GPR) 205
 6. 3.1 Transient Field due to Dipole Radiation Reflected from the AirEarth Interface 207
 6. 3.2 Transient Field Transmitted into a Lossy Ground due to Dipole Radiation 214
 6.4 Simplified Calculation of Specific Absorption (SA) in Human Tissue 221
 6.4.1 Calculation of specific absorption (SA) 222
 6.4.2 Numerical results 223
 6.5 Time Domain Energy Measures 229
 6.6 Time Domain Analysis of Multiple Straight Wires above a Halfspace by means of Various Time Domain Measures 234
 6.6.1 Theoretical background 235
 6.6.2 Numerical results 237
 7. Bioelectromagnetics  Exposure of Humans in GHz Frequency Range 280
 7.1 Assessment of Sab in a planar single layer tissue 280
 7.1.1 Analysis of Dipole Antenna in Front of Planar Interface 282
 7.1.2. Calculation of Absorbed Power Density 285
 7.1.3 Computational Examples 285
 7.2. Assessment of Transmitted Power Density in a Single Layer Tissue 289
 7.2.1 Formulation 290
 7.2.2 Results for current distribution 294
 8. Multiphysics Phenomena 330
 8.1. ElectromagneticThermal modeling of the Human Exposure to HF Radiation 330
 8.1.1. Electromagnetic Dosimetry 330
 8.1.2. Thermal Dosimetry 332
 8.1.3. Computational examples 336
 8.2. Magnetohydrodynamics (MHD) Models for Plasma Confinement 337
 8.2.1. Grad Shafranov Equation 338
 8.2.2. Transport Phenomena Modeling 349
 8.3. Schrodinger Equation 358
 8.3.1 Derivation of Schrr̲dinger equation 359
 8.3.2 Analytical solution of Schrr̲dinger equation 360
 8.3.3 FDM solution of Schrr̲dinger equation 361
 8.3.4 FEM solution of Schrr̲dinger equation 362
 8.3.5 Neural netwok approach to the solution of Schrr̲dinger equation 364
 9. Methods for stochastic analysis 372
 9.1. Uncertainty quantification framework 373
 9.1.1. Uncertainty quantification (UQ) of model input parameters 373
 9.1.2. Uncertainty propagation (UP) 374
 9.1.3. Monte Carlo method 375
 9.2. Stochastic collocation method 376
 9.2.1. Computation of stochastic moments 377
 9.2.2. Interpolation approaches 378
 9.2.3. Collocation points selection 379
 9.2.4. Multidimensional stochastic problems 379
 9.3. Sensitivity analysis 383
 9.3.1. "Oneatatime" (OAT) approach 384
 9.3.2. ANalysis Of VAriance (ANOVA) based method 384
 10. Stochasticdeterministic electromagnetic dosimetry 389
 10.1. Internal stochastic dosimetry for a simple body model exposed to low frequency field 390
 10.2. Internal stochastic dosimetry for a simple body model exposed to electromagnetic pulse 393
 10.3. Internal stochastic dosimetry for a realistic threecompartment human head exposed to high frequency plane wave 396
 10.4. Incident field stochastic dosimetry for base station antenna radiation 401
 11. Stochasticdeterministic thermal dosimetry 411
 11.1. Stochastic sensitivity analysis of bioheat transfer equation 412
 11.2. Stochastic thermal dosimetry for homogeneous human brain 414
 11.3. Stochastic thermal dosimetry for threecompartment human head 421
 11.4. Stochastic thermal dosimetry below 6 GHz for 5G mobile communication systems 424
 12. Stochasticdeterministic modelling in biomedical applications of electromagnetic fields430
 12.1. Transcranial Magnetic Stimulation 430
 12.2. Transcranial Electric Stimulation 435
 12.2.1. Cylinder representation of human head 436
 12.2.2. A 3compartment human head model 438
 12.2.3. A 9compartment human head model 441
 12.3. Neuron's action potential dynamics 447
 12.4. Radiation efficiency of implantable antennas 453
 13. Stochasticdeterministic modelling of wire configurations in frequency and time domain 1
 13.1. Ground penetrating radar 1
 13.1.1. The transient current induced along the GPR antenna 2
 13.1.2. The transient field transmitted into a lossy soil 5
 13.2. Grounding systems 10
 13.2.1. Test case #1: soil and lighting pulse parameters are random variables 12
 13.2.2. Test case #2: soil and electrode parameters are random variables 13
 13.2.3. Test case #3: soil, electrode and lighting pulse parameters are random variables 14
 13.3. Airtraffic control systems 17
 13.3.1. Runway covered with snow 19
 13.3.2. Runway covered with vegetation 21
 14. A note on stochastic modelling of plasma physics phenomena 488
 14.1. Tokamak current diffusion equation 488
 .