1  20
Next
2. Problemas do estruturalismo [1968]
 Problèmes du structuralisme. Portuguese.
 Rio de Janeiro : Zahar Editores, 1968.
 Description
 Book — 199 pages
 Summary

 Apresentação: uma tentativa de definição / Jean Pouillon ; tradução de Moacir Palmeira
 Sobre o sentido da palavra estrutura em matematica / Marc Barbut ; tradução de Jacqueline Castro Estrutura e historia A.J. Greimas ; tradução de Ada Natal Rodrigues
 Sistema, estrutura e contradição em 'O Capital' / Maurice Godelier ; tradução de Enylton de Sá Rêgo
 Campo intelectual e projeto criador / Pierre Bourdieu ; tradução de Rosa Maria Ribeiro da Silva
 A análise literária, túmulo das estruturas / Pierre Macherey ; tradução de Maria Célia Bandeira
 A estruturas da troca em cinna / Jacques Eehrmann ; tradução de Ada Natal Rodrigues.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QA8.6 .P76168 1968  Available 
3. Search for Certainty, The. [2002]
 Giaquinto, Marcus.
 Oxford : Oxford University Press, 2002.
 Description
 Book — 1 online resource (300 pages)
 Summary

 1. Setting
 2. The Class Paradoxes and Early Responses
 3. The Language Paradoxes and Principia Mathematica
 4. Axiomatic Set Theory and Hilbert's Programme
 5. Godel's Underivability Theorems
 6. Aftermath
 Bibliography, Index.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 StuhlmannLaeisz, Rainer.
 Paderborn : Mentis, Brill Deutschland, [2020]
 Description
 Book — 161 pages ; 24 cm
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QA9 .F723 .S78 2020  Available 
 1. ed.  Buenos Aires : Imago Mundi : Universidad Nacional de General Sarmiento, 2010.
 Description
 Book — 298 p.
 Online
6. Wittgenstein's philosophy of mathematics [1994]
 Frascolla, Pasquale, 1952
 London ; New York : Routledge, 1994.
 Description
 Book — 1 online resource (viii, 189 pages) Digital: data file.
 Summary

 Preface Abbreviations I. The Philosophy of Arithmetic of the Tractatus
 1. Preliminaries
 2. Systematic Exposition
 3. The "Knowledge" of Forms: Vision and Calculation
 4. Foundations of Mathematics (I) II. Verificationism and its Limits. The Intermediate Phase (1929'33)
 1. Introduction
 2. Finite Cardinal Numbers: the Arithmetic of Strokes
 3. Mathematical Propositions
 4. The Mathematical Infinite 4.1 Quantifiers in Mathematics 4.2 Recursive Arithmetic and Algebra 4.3 Real Numbers 4.4 Set Theory
 5. Foundations of Mathematics (II) III. From Facts to Concepts. The Later Writings on Mathematics (1934'44)
 1. The Crisis of Verificationism: RuleFollowing
 2. Mathematical Proofs as Paradigms
 3. The Problem of Strict Finitism
 4. Wittgenstein's QuasiRevisionism 4.1 Cantor's Diagonal Proof and Transfinite Cardinals 4.2 The Law of Excluded Middle 4.3 Consistency References.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
7. Putʹ : matematika i drugie miry [2002]
 Parshin, A. N.
 Moskva : Dobrosvet, 2002.
 Description
 Book — 238 p. ; 22 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
Q126.8 .P37 2002  Available 
 Mancosu, Paolo.
 New York : Oxford University Press, 1996.
 Description
 Book — 1 online resource (viii, 275 pages) : illustrations
 Summary

 Cover
 Contents
 1. Philosophy of Mathematics and Mathematical Practice in the Early Seventeenth Century
 1.1 The Quaestio de Certitudine Mathematicarum
 1.2 The Quaestio in the Seventeenth Century
 1.3 The Quaestio and Mathematical Practice
 2. Cavalieri's Geometry of Indivisibles and Guldin's Centers of Gravity
 2.1 Magnitudes, Ratios, and the Method of Exhaustion
 2.2 Cavalieri's Two Methods of Indivisibles
 2.3 Guldin's Objections to Cavalieri's Geometry of Indivisibles
 2.4 Guldin's Centrobaryca and Cavalieri's Objections
 3. Descartes' Géométrie
 3.1 Descartes' Géométrie
 3.2 The Algebraization of Mathematics
 4. The Problem of Continuity
 4.1 Motion and Genetic Definitions
 4.2 The "Causal" Theories in Arnauld and Bolzano
 4.3 Proofs by Contradiction from Kant to the Present
 5. Paradoxes of the Infinite
 5.1 Indivisibles and Infinitely Small Quantities
 5.2 The Infinitely Large
 6. Leibniz's Differential Calculus and Its Opponents
 6.1 Leibniz's Nova Methodus and L'Hôpital's Analyse des Infiniment Petits
 6.2 Early Debates with Clüver and Nieuwentijt
 6.3 The Foundational Debate in the Paris Academy of Sciences
 Appendix: Giuseppe Biancani's De Mathematicarum Natura
 Notes
 References
 Index
 A
 B
 C
 D
 E
 F
 G
 H
 I
 J
 K
 L
 M
 N
 O
 P
 Q
 R
 S
 T
 U
 V
 W
 Y.
(source: Nielsen Book Data)
The 17th century saw a dramatic development in mathematical theory and practice. This is an account of the foundational issues raised in the relationship between mathematical advances of the period and the philosophy of mathematics.
(source: Nielsen Book Data)
 Stillwell, John, author. Author http://id.loc.gov/vocabulary/relators/aut
 Princeton, NJ : Princeton University Press, [2016]
 Description
 Book — 1 online resource (440 p.) : 127 b/w illus Digital: text file; PDF.
 Summary

 Frontmatter
 Contents
 Preface
 1. Elementary Topics
 2. Arithmetic
 3. Computation
 4. Algebra
 5. Geometry
 6. Calculus
 7. Combinatorics
 8. Probability
 9. Logic
 10. Some Advanced Mathematics
 Bibliography
 Index
 Kuiper, John (Johannes John Carel), 1935
 Utrecht : ZENO, c2004.
 Description
 Book — xviii, 359 p. : ill. ; 24 cm.
Science Library (Li and Ma)
Science Library (Li and Ma)  Status 

Stacks  
QA248 .K85 2004  Unknown 
11. John Napier : Life, Logarithms, and Legacy [2015]
 Havil, Julian, 1952 author. Author http://id.loc.gov/vocabulary/relators/aut
 Course Book  Princeton, NJ : Princeton University Press, [2014]
 Description
 Book — 1 online resource (296 p.) : 64 line illus. 48 tables Digital: text file; PDF.
 Summary

 Frontmatter
 Contents
 Acknowledgments
 Introduction
 Chapter one. Life and Lineage
 Chapter two. Revelation and Recognition
 Chapter three. A New Tool for Calculation
 Chapter four. Constructing the Canon
 Chapter five. Analogue and Digital Computers
 Chapter six. Logistics: The Art of Computing Well
 Chapter seven. Legacy
 Epilogue
 References
 Index
 Hellman, Geoffrey.
 Oxford : Clarendon Press ; New York : Oxford Univ. Press, ©1989.
 Description
 Book — 1 online resource (ix, 154 pages)
 Summary

 Part 1 The natural numbers and analysis: the modalstructural framework  the hypothetical component
 the categorical component  an axiom of infinity and a derivation (inspired by Dedekind with help from Frege)
 justifying the translation scheme
 justification from within
 extensions
 the question of nominalism. Part 2 Set theory: informal principles  many versus one
 the relevant structures
 unbounded sentences  Putnam semantics
 axioms of infinity  looking back
 axioms of infinity  climbing up. Part 3 Mathematics and physical reality: the leading ideas
 carrying the mathematics of modern physics
 global solutions
 metaphysical realist commitments  "synthetic determination" relations
 a role for representation theorems.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Tieszen, Richard, author.
 Cambridge : Cambridge University Press, 2005.
 Description
 Book — 1 online resource (368 pages) : digital, PDF file(s).
 Summary

 Part I. Reason, Science, and Mathematics: 1. Science as a triumph of the human spirit and science in crisis: Husserl and the Fortunes of Reason
 2. Mathematics and transcendental phenomenology
 Part II. Kurt Godel, Phenomenology and the Philosophy of Mathematics: 3. Kurt Godel and phenomenology
 4. Godel's philosophical remarks on mathematics and logic
 5. Godel's path from the incompleteness theorems (1931) to Phenomenology (1961)
 6. Godel and the intuition of concepts
 7. Godel and Quine on meaning and mathematics
 8. Maddy on realism in mathematics
 9. Penrose and the view that minds are not machines
 Part III. Constructivism, Fulfilled Intentions, and Origins: 10. Intuitionism, meaning theory and cognition
 11. The philosophical background of Weyl's mathematical constructivism
 12. What is a proof?
 13. Phenomenology and mathematical knowledge
 14. Logicism, impredicativity, formalism
 15. The philosophy of arithmetic: Frege and Husserl.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
14. Lambdacalcul types et modèles [1990]
 Krivine, J. L. (Jean Louis)
 Paris : Masson, 1990.
 Description
 Book — viii, 176 p. ; 25 cm.
 Online
SAL3 (offcampus storage)
SAL3 (offcampus storage)  Status 

Stacks  Request (opens in new tab) 
QA9.5 .K75 1990  Available 
 Reimer, David, 1962 author. Author http://id.loc.gov/vocabulary/relators/aut
 Course Book  Princeton, NJ : Princeton University Press, [2014]
 Description
 Book — 1 online resource (256 p.) : 301 color illus Digital: text file; PDF.
 Summary

 Frontmatter
 Contents
 Preface
 Introduction
 Computation Tables
 1. Numbers
 2. Fractions
 3. Operations
 4. Simplification
 5. Techniques and Strategies
 6. Miscellany
 7. BaseBased Mathematics
 8. Judgment Day
 Practice Solutions
 Index
16. Berkeley's philosophy of mathematics [1993]
 Jesseph, Douglas Michael.
 Chicago : University of Chicago Press, ©1993.
 Description
 Book — 1 online resource (xii, 322 pages) : illustrations
 Summary

 1. Abstraction and the Berkeleyan philosophy of mathematics
 2. Berkeley's new foundations for geometry
 3. Berkeley's new foundations for arithmetic
 4. Berkeley and the calculus : the background
 5. Berkeley and the calculus : writings before the "Analyst"
 6. Berkeley and the calculus : the "Analyst"
 7. The aftermath of the "Analyst."
(source: Nielsen Book Data)
 Mineola, New York : Dover Publications, Inc., 2013.
 Description
 Book — 1 online resource (1003 pages)
 Summary

 Linear and nonlinear oscillations / Solomon Lefschetz
 Equilibrium analysis: the stability theory and Liapunov / Richard Bellman
 Exterior ballistics / John W. Green
 Elements of the calculus of variations / Magnus R. Hestenes
 Hyperbolic partial differential equations and applications / Richard Courant
 Boundaryvalue problems in elliptic partial differential equations / Menahem M. Schiffer
 The elastostatic boundaryvalue problems / Ivan S. Sokolnikoff
 The theory of prediction / Norbert Wiener
 The theory of games / H. Frederic Bohnenblust
 Applied mathematics in operations research / Gilbert W. King
 The theory of dynamic programming / Richard Bellman
 Monte carlo methods / George W. Brown
 Matrices in engineering / Louis A. Pipes
 Functional transformations for engineering design / John L. Barnes
 Conformal mapping methods / Edwin F. Beckenbach
 Nonlinear methods / Charles B. Morrey, Jr.
 What are relaxation methods? / George E. Forsythe
 Methods of steep descent / Charles B. Tompkins
 Highspeed computing devices and their applications / Derrick H. Lehmer.
 Online
 Gilsdorf, Thomas E.
 Hoboken, N.J. : Wiley, c2012.
 Description
 Book — xvii, 287 p. : ill. ; 24 cm.
 Summary

 Preface ix Introduction xi PART I General Concepts
 1 Understanding the Culture in Mathematics 3
 2 Numeration S ystems 24
 3 Number Gestures and N umber S ymbols 39
 4 Kinship and S ocial R elations 57
 5 Art and D ecoration 73
 6 Divination 103
 7 Games 123
 8 Calendars 142 PART II Case S tudies
 9 Hnahnu Math: T he O tomies 181
 10 Tawantinsuyu Math: T he Incas 211 Hints to S elected E xercises 253 Bibliography 273 Index 281.
 (source: Nielsen Book Data)
(source: Nielsen Book Data)
 Montreuil : Omniscience, c2010.
 Description
 Book — 348 p. : ill., music ; 24 cm.
 Online
20. Philosophy of Mathematics [2018]
 Bedürftig, Thomas, author.
 Berlin ; Boston : De Gruyter, [2018]
 Description
 Book — 1 online resource (474 p). Digital: text file; PDF.
 Summary

 Frontmatter
 Contents
 Preface
 Introduction
 1. On the Way to the Reals
 2. On the History of the Philosophy of Mathematics
 3. On Fundamental Questions of the Philosophy of Mathematics
 4. Sets and Set Theories
 5. Axiomatic Approach and Logic
 6. Thinking and Calculating Infinitesimally  First Nonstandard Steps
 7. Retrospection
 Biographies
 Bibliography
 Index of Names
 Index of Symbols
 Index of subjects
(source: Nielsen Book Data)
Articles+
Journal articles, ebooks, & other eresources
Guides
Course and topicbased guides to collections, tools, and services.