1 - 20
Next
- Adkins, Lee C.
- New York : John Wiley & Sons, Inc., c2011.
- Description
- Book — xii, 611 p. : ill. ; 28 cm.
- Summary
-
the cutting-edge study guide to Hill, Griffiths, and Lim's Principles of Econometrics, incorporates the capabilities of Stata software to practically apply the principles of econometrics. Readers will learn how to apply basic econometric tools and the Stata software to estimation, inference and forecasting in the context of real world economic problems. In order to make concepts more accessible, it also offers lucid descriptions of techniques as well as appropriate applications to today's situations. Along the way, readers will find introductions to simple economic models and questions to enhance critical thinking.
(source: Nielsen Book Data)
- Online
2. Econometrics [2022]
- Hansen, Bruce E., 1962- author.
- Princeton, New Jersey : Princeton University Press, [2022]
- Description
- Book — xxxi, 1044 pages : illustrations ; 26 cm
- Summary
-
- Introduction
- Conditional expectation and projection
- The algebra of least squares
- Least squares regression
- Normal regression
- A review of large sample asymptotics
- Asymptotic theory for least squares
- Restricted estimation
- Hypothesis testing
- Resampling methods
- Multivariate regression
- Instrumental variables
- Generalized method of moments
- Time series
- Multivariate time series
- Nonstationary time series
- Panel data
- Difference in differences
- Nonparametric regression
- Series regression
- Regression discontinuity
- M-Estimators
- Nonlinear least squares
- Quantile regression
- Binary choice
- Multiple choice
- Censoring and selection
- Model selection, Stein shrinkage, and model averaging
- Machine learning.
- Online
Law Library (Crown)
Law Library (Crown) | Status |
---|---|
Basement | Request (opens in new tab) |
HB139 .H3636 2022 | Unknown |
3. The econometric analysis of network data [2020]
- London : Academic Press, 2020.
- Description
- Book — 1 online resource
- Summary
-
- 1. Introduction
- 2. Dyadic regression
- 3. Strategic network formation
- 4. Testing for externalities in network formation using simulation
- 5. Econometric analysis of bipartite networks
- 6. An empirical model for strategic network formation
- 7. Econometric analysis of models with social interactions
- 8. Many player asymptotics for large network formation problems.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Bingley : Emerald Publishing Limited, 2020.
- Description
- Book — 1 online resource (392 p.).
- Summary
-
- Section 1: Identification of Network ModelsChapter 1. Identification and Estimation of Network Models with Different Between and Within-type Interactions
- Tiziano Arduini, Eleonora Patacchini and Edoardo Rainone Chapter 2. Identification Methods for Social Interactions Models with Unknown Networks
- Hon Ho Kwok Chapter 3. Snowball Sampling and Sample Selection in a Social Network
- TszKin Julian Chan Section 2: Network Formation Chapter 4. Trade Networks and the Strength of Strong Ties
- Aureo de Paula Chapter 5. Application and Computation of a Flexible Class of Network Formation Models
- Seth Richards-Shubik Section 3: Networks and Spatial Econometrics Chapter 6. Implementing Faustmann-Marshall-Pressler at Scale: Stochastic Dynamic Programming in Space
- Harry J. Paarsch and John Rust Chapter 7. A Spatial Panel Model of Bank Branches in Canada
- Heng Chen and Matthew Strathearn Chapter 8. Full-information Bayesian Estimation of Cross-sectional Sample Selection Models
- Sophia Ding and Peter Egger Chapter 9. Survival Analysis of Banknote Circulation: Fitness, Network Structure, and Machine Learning
- Diego Rojas, Juan Estrada, Kim Pl Huynh and David T. Jacho-Chavez Section 4: Applications of Financial Networks Chapter 10. Financial Contagion in Cross-holdings Networks: The Case of Ecuador
- Pablo Estrada and Leonardo Sanchez-Aragon Chapter 11. Estimating Spillover Effects with Bilateral Outcomes
- Edoardo Rainone Chapter 12. Interconnectedness through the Lens of Consumer Credit Markets
- Anson T.Y. Ho Chapter 13. FRM Financial Risk Meter
- Andrija Mihoci, Michael Althof, Cathy Yi-Hsuan Chen and Wolfgang Karl Hardle.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Hong, Yongmiao, author.
- Singapore ; Hackensack, NJ : World Scientific Publishing Co. Pte. Ltd., [2020]
- Description
- Book — 1 online resource
- Summary
-
- Intro
- Contents
- Preface
- 1. Introduction to Econometrics
- 1.1 Introduction
- 1.2 Quantitative Features of Modern Economics
- 1.3 Mathematical Modeling
- 1.4 Empirical Validation
- 1.5 Illustrative Examples
- 1.6 Limitations of Econometric Analysis
- 1.7 Conclusion
- Exercise 1
- 2. General Regression Analysis
- 2.1 Conditional Probability Distribution
- 2.2 Conditional Mean and Regression Analysis
- 2.3 Linear Regression Modeling
- 2.4 Correct Model Specification for Conditional Mean
- 2.5 Conclusion
- Exercise 2
- 3. Classical Linear Regression Models
- 3.1 Framework and Assumptions
- 3.2 Ordinary Least Squares (OLS) Estimation
- 3.3 Goodness of Fit and Model Selection Criteria
- 3.4 Consistency and Efficiency of the OLS Estimator
- 3.5 Sampling Distribution of the OLS Estimator
- 3.6 Variance Estimation for the OLS Estimator
- 3.7 Hypothesis Testing
- 3.8 Applications
- 3.9 Generalized Least Squares Estimation
- 3.10 Conclusion
- Exercise 3
- 4. Linear Regression Models with Independent Observations
- 4.1 Introduction to Asymptotic Theory
- 4.2 Framework and Assumptions
- 4.3 Consistency of the OLS Estimator
- 4.4 Asymptotic Normality of the OLS Estimator
- 4.5 Asymptotic Variance Estimation
- 4.6 Hypothesis Testing
- 4.7 Testing for Conditional Homoskedasticity
- 4.8 Conclusion
- Exercise 4
- 5. Linear Regression Models with Dependent Observations
- 5.1 Introduction to Time Series Analysis
- 5.2 Framework and Assumptions
- 5.3 Consistency of the OLS Estimator
- 5.4 Asymptotic Normality of the OLS Estimator
- 5.5 Asymptotic Variance Estimation for the OLS Estimator
- 5.6 Hypothesis Testing
- 5.7 Testing for Conditional Heteroskedasticity and Autoregressive Conditional Heteroskedasticity
- 5.8 Testing for Serial Correlation
- 5.9 Conclusion
- Exercise 5
- 6. Linear Regression Models Under Conditional Heteroskedasticity and Autocorrelation
- 6.1 Motivation
- 6.2 Framework and Assumptions
- 6.3 Long-Run Variance-Covariance Matrix Estimation
- 6.4 Consistency of the OLS Estimator
- 6.5 Asymptotic Normality of the OLS Estimator
- 6.6 Hypothesis Testing
- 6.7 Testing Whether Long-Run Variance-Covariance Matrix Estimation Is Needed
- 6.8 Ornut-Cochrane Procedure
- 6.9 Conclusion
- Exercise 6
- 7. Instrumental Variables Regression
- 7.1 Motivation
- 7.2 Framework and Assumptions
- 7.3 Two-Stage Least Squares (2SLS) Estimation
- 7.4 Consistency of the 2SLS Estimator
- 7.5 Asymptotic Normality of the 2SLS Estimator
- 7.6 Interpretation and Estimation of Asymptotic Variance-Covariance Matrix of the 2SLS Estimator
- 7.7 Hypothesis Testing
- 7.8 Hausman's Test
- 7.9 Conclusion
- Exercise 7
- 8. Generalized Method of Moments Estimation
- 8.1 Introduction to Method of Moments Estimation
- 8.2 Generalized Method of Moments (GMM) Estimation
- 8.3 Consistency of the GMM Estimator
- 8.4 Asymptotic Normality of the GMM Estimator
(source: Nielsen Book Data)
6. Metric power [2016]
- Beer, David, 1977- author.
- London : Palgrave Macmillan, [2016]
- Description
- Book — xiii, 223 pages ; 22 cm
- Summary
-
- Chapter 1. Introducing metric power.-
- Chapter 2. Measurement.-
- Chapter 3. Circulation.-
- Chapter 4. Possibility.-
- Chapter 5. Conclusion: The intersections and imbrications of metric power.-
- Chapter 6. Coda... Metric power and the production of uncertainty.(how does metric power make us feel?).
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
- Andrle, Michal, author.
- [Place of publication not identified] : International Monetary Fund, 2016.
- Description
- Book — 1 online resource (8 pages)
- Summary
-
- Cover; CONTENTS; Abstract; I. Introduction; II. System Priors; III. Example
- System Priors for an AR(2) Process; IV. Conclusion; V. Appendix: Pseudo Code for the Posterior Kernel; PSEUDO CODE:; FIGURES; 1. Parameter regions for different priors; 2. Model properties for admissible regions.
- Angrist, Joshua David, author.
- Princeton ; Oxford : Princeton University Press, [2015]
- Description
- Book — xv, 282 pages : illustrations ; 22 cm
- Summary
-
- Randomized trials
- Regression
- Instrumental variables
- Regression discontinuity designs
- Differences-in-differences
- The wages of schooling.
(source: Nielsen Book Data)
- Online
Law Library (Crown)
Law Library (Crown) | Status |
---|---|
Basement | Request (opens in new tab) |
HB139 .A53984 2015 | Unknown |
HB139 .A53984 2015 | CHECKEDOUT |
- Angrist, Joshua David, author.
- Princeton, New Jersey : Princeton University Press, [2015]
- Description
- Book — xv, 282 pages : illustrations ; 22cm
- Summary
-
- List of Figures vii List of Tables ix Introduction xi
- 1 Randomized Trials 1 1.1 In Sickness and in Health (Insurance) 1 1.2 The Oregon Trail 24 Masters of 'Metrics: From Daniel to R. A. Fisher 30 Appendix: Mastering Inference 33
- 2 Regression 47 2.1 A Tale of Two Colleges 47 2.2 Make Me a Match, Run Me a Regression 55 2.3 Ceteris Paribus? 68 Masters of 'Metrics: Galton and Yule 79 Appendix: Regression Theory 82
- 3 Instrumental Variables 98 3.1 The Charter Conundrum 99 3.2 Abuse Busters 115 3.3 The Population Bomb 123 Masters of 'Metrics: The Remarkable Wrights 139 Appendix: IV Theory 142
- 4 Regression Discontinuity Designs 147 4.1 Birthdays and Funerals 148 4.2 The Elite Illusion 164 Masters of 'Metrics: Donald Campbell 175
- 5 Differences-in-Differences 178 5.1 A Mississippi Experiment 178 5.2 Drink, Drank, ... 191 Masters of 'Metrics: John Snow 204 Appendix: Standard Errors for Regression DD 205
- 6 The Wages of Schooling 209 6.1 Schooling, Experience, and Earnings 209 6.2 Twins Double the Fun 217 6.3 Econometricians Are Known by Their ... Instruments 223 6.4 Rustling Sheepskin in the Lone Star State 235 Appendix: Bias from Measurement Error 240 Abbreviations and Acronyms 245 Empirical Notes 249 Acknowledgments 269 Index 271.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
10. Econometric analysis [2012]
- Greene, William H., 1951-
- 7th ed. - Boston : Prentice Hall, c2012.
- Description
- Book — xxxix, 1188 p. : ill. ; 24 cm.
- Summary
-
- Part I: The Linear Regression Model
- Chapter 1: Econometrics
- Chapter 2: The Linear Regression Model
- Chapter 3: Least Squares
- Chapter 4: The Least Squares Estimator
- Chapter 5: Hypothesis Tests and Model Selection
- Chapter 6: Functional Form and Structural Change
- Chapter 7: Nonlinear, Semiparametric, and Nonparametric Regression Models
- Chapter 8: Endogeneity and Instrumental Variable Estimation Part II: Generalized Regression Model and Equation Systems
- Chapter 9: The Generalized Regression Model and Heteroscedasticity
- Chapter 10: Systems of Equations
- Chapter 11: Models for Panel Data Part III: Estimation Methodology
- Chapter 12: Estimation Frameworks in Econometrics
- Chapter 13: Minimum Distance Estimation and the Generalized Method of Moments
- Chapter 14: Maximum Likelihood Estimation
- Chapter 15: Simulation-Based Estimation and Inference
- Chapter 16: Bayesian Estimation and Inference Part IV: Cross Sections, Panel Data, and Microeconometrics
- Chapter 17: Discrete Choice
- Chapter 18: Discrete Choices and Event Counts
- Chapter 19: Limited Dependent Variables--Truncation, Censoring, and Sample Selection Part V: Time Series and Macroeconometrics
- Chapter 20: Serial Correlation
- Chapter 21: Models with Lagged Variables
- Chapter 22: Time-Series Models
- Chapter 23: Nonstationary Data Part VI: Appendices Appendix A: Matrix Algebra Appendix B: Probability and Distribution Theory Appendix C: Estimation and Inference Appendix D: Large-Sample Distribution Theory Appendix E: Computation and Optimization Appendix F: Data Sets Used in Applications Appendix G: Statistical Tables.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
Green Library
Green Library | Status |
---|---|
Find it Stacks | |
HB139 .G74 2012 | Unknown |
Find it Velma Denning Room (Social Science Data and Software) | |
HB139 .G74 2012 | In-library use |
11. Econometric analysis [2012]
- Greene, William H., 1951-
- 7th ed. - Boston : Prentice Hall, c2012.
- Description
- Book — xxxix, 1,198 p. : ill. ; 24 cm.
- Summary
-
- Part I: The Linear Regression Model
- Chapter 1: Econometrics
- Chapter 2: The Linear Regression Model
- Chapter 3: Least Squares
- Chapter 4: The Least Squares Estimator
- Chapter 5: Hypothesis Tests and Model Selection
- Chapter 6: Functional Form and Structural Change
- Chapter 7: Nonlinear, Semiparametric, and Nonparametric Regression Models
- Chapter 8: Endogeneity and Instrumental Variable Estimation Part II: Generalized Regression Model and Equation Systems
- Chapter 9: The Generalized Regression Model and Heteroscedasticity
- Chapter 10: Systems of Equations
- Chapter 11: Models for Panel Data Part III: Estimation Methodology
- Chapter 12: Estimation Frameworks in Econometrics
- Chapter 13: Minimum Distance Estimation and the Generalized Method of Moments
- Chapter 14: Maximum Likelihood Estimation
- Chapter 15: Simulation-Based Estimation and Inference
- Chapter 16: Bayesian Estimation and Inference Part IV: Cross Sections, Panel Data, and Microeconometrics
- Chapter 17: Discrete Choice
- Chapter 18: Discrete Choices and Event Counts
- Chapter 19: Limited Dependent Variables--Truncation, Censoring, and Sample Selection Part V: Time Series and Macroeconometrics
- Chapter 20: Serial Correlation
- Chapter 21: Models with Lagged Variables
- Chapter 22: Time-Series Models
- Chapter 23: Nonstationary Data Part VI: Appendices Appendix A: Matrix Algebra Appendix B: Probability and Distribution Theory Appendix C: Estimation and Inference Appendix D: Large-Sample Distribution Theory Appendix E: Computation and Optimization Appendix F: Data Sets Used in Applications Appendix G: Statistical Tables.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
Green Library
Green Library | Status |
---|---|
Find it On reserve: Ask at Green circulation desk | |
HB139 .G74 2012 | Unknown 2-hour loan |
ECON-270-01
- Course
- ECON-270-01 -- Intermediate Econometrics I
- Instructor(s)
- Han Hong
- Judge, George G.
- Cambridge [U.K.] ; New York : Cambridge University Press, 2012.
- Description
- Book — xvi, 232 p. : ill. ; 23 cm.
- Summary
-
- Preface
- 1. Econometric information recovery
- Part I. Traditional Parametric and Semiparametric Probability Models: Estimation and Inference: 2. Formulation and analysis of parametric and semiparametric linear models
- 3. Method of moments, GMM, and estimating equations
- Part II. Formulation and Solution of Stochastic Inverse Problems: 4. A stochastic-empirical likelihood inverse problem: formulation and estimation
- 5. A stochastic-empirical likelihood inverse problem: inference
- 6. Kullback-Leibler information and the maximum empirical exponential likelihood
- Part III. A Family of Minimum Discrepancy Estimators: 7. The Cressie-Read family of divergence measures and likelihood functions
- 8. Cressie-Read-MEL-type estimators in practice: evidence of estimation and inference sampling performance
- Part IV. Binary Discrete Choice MPD-EML Econometric Models: 9. Family of distribution functions for the binary response-choice model
- 10. Estimation and inference for the binary response model based on the MPD family of distributions
- Part V. Optimal Convex Divergence: 11. Choosing the optimal divergence under quadratic loss
- 12. Epilogue.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
- Wooldridge, Jeffrey M., 1960-
- 5th ed. - Mason, Ohio : South-Western Cengage Learning, ©2012.
- Description
- Book — xxv, 881 pages : illustrations ; 24 cm
- Summary
-
- Ch. 1. The nature of econometrics and economic data
- pt. 1. Regression analysis with cross-sectional data
- Ch. 2. The simple regression model
- Ch. 3. Mutiple regression analysis: estimation
- Ch. 4. Mutiple regression analysis: inference
- Ch. 5. Mutiple regression analysis: OLS asymptotics
- Ch. 6. Mutiple regression analysis: further issues
- Ch. 7. Mutiple regression analysis with qualitative information: binary (or dummy) variables
- Ch. 8. Hetroskedasticity
- Ch. 9. More on specification and data issues
- pt. 2. Regression analysis with time series data
- Ch. 10. Basic regression analysis with time series data
- Ch. 11. Further issues in using OLS with time series data
- Ch. 12. Serial correlation and heteroskedasticity in time series regressions
- Ch. 13. Pooling cross sections across time: simple panel data methods
- Ch. 14. Advanced panel data methods
- Ch. 15. Instrumental variables estimation and two stage least squares
- Ch. 16. Simulatensous equations models
- Ch. 17. Limited dependent variable models and sample selection corrections
- Ch. 18. Advanced time series topics
- Ch. 19. Carrying out an empirical project
- Appendices.
(source: Nielsen Book Data)
- Online
Green Library
Green Library | Status |
---|---|
Find it On reserve: Ask at Green circulation desk | |
HB139 .W665 2012 | Unknown 2-hour loan |
Find it Stacks | |
HB139 .W665 2012 | CHECKEDOUT Request |
ECON-270-01
- Course
- ECON-270-01 -- Intermediate Econometrics I
- Instructor(s)
- Han Hong
- Metrolohichni ekonomichni systemy. English
- Bashni͡anyn, H. I. (Hryhoriĭ Ivanovych), 1951-
- Lviv : Publishing house of Lviv Commercial Academy, 2012.
- Description
- Book — 1,149 p. : ill., col. port. ; 25 cm.
- Online
SAL3 (off-campus storage)
SAL3 (off-campus storage) | Status |
---|---|
Stacks | Request (opens in new tab) |
HB139 .B3813 2012 | Available |
- Morettin, Pedro Alberto, author.
- 2a edição revista e ampliada. - Sao Paulo, SP, Brasil : Blucher, [2011]
- Description
- Book — 1 online resource
16. Introduction to econometrics [2011]
- Stock, James H.
- 3rd ed. - Boston : Addison-Wesley, c2011.
- Description
- Book — xlii, 785 p. : ill. ; 24 cm.
- Summary
-
- Economic questions and data
- Review of probability
- Review of statistics
- Linear regression with one regressor
- Regression with a single regressor : hypothesis tests and confidence intervals
- Linear regression with multiple regressors
- Hypothesis tests and confidence intervals in multiple regression
- Nonlinear regression functions
- Assessing studies based on multiple regression
- Regression with panel data
- Regression with a binary dependent variable
- Instrumental variables regression
- Experiments and quasi-experiments
- Introduction to time series regression and forecasting
- Estimation of dynamic causal effects
- Additional topics in time series regression
- The theory of linear regression with one regressor
- The theory of multiple regression.
(source: Nielsen Book Data)
- Online
Law Library (Crown)
Law Library (Crown) | Status |
---|---|
Basement | Request (opens in new tab) |
HB139 .S765 2011 | CHECKEDOUT |
HB139 .S765 2011 | Unknown |
HB139 .S765 2011 | Unknown |
17. Introduction to econometrics [2011]
- Stock, James H.
- 3rd ed. - Boston : Addison-Wesley, c2011.
- Description
- Book — xlii, 785 p. : ill. ; 24 cm.
- Summary
-
- Part I. Introduction and Review
- Chapter 1. Economic Questions and Data
- Chapter 2. Review of Probability
- Chapter 3. Review of Statistics Part II. Fundamentals of Regression Analysis
- Chapter 4. Linear Regression with One Regressor
- Chapter 5. Regression with a Single Regressor: Hypothesis Tests and Confidence Intervals
- Chapter 6. Linear Regression with Multiple Regressors
- Chapter 7. Hypothesis Tests and Confidence Intervals in Multiple Regression
- Chapter 8. Nonlinear Regression Functions
- Chapter 9. Assessing Studies Based on Multiple Regression Part III. Further Topics in Regression Analysis
- Chapter 10. Regression with Panel Data
- Chapter 11. Regression with a Binary Dependent Variable
- Chapter 12. Instrumental Variables Regression
- Chapter 13. Experiments and Quasi-Experiments Part IV. Regression Analysis of Economic Time Series Data
- Chapter 14. Introduction to Time Series Regression and Forecasting
- Chapter 15. Estimation of Dynamic Causal Effects
- Chapter 16. Additional Topics in Time Series Regression Part V. The Econometric Theory of Regression Analysis
- Chapter 17. The Theory of Linear Regression with One Regressor
- Chapter 18. The Theory of Multiple Regression.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Online
18. Einführung in die Ökonometrie [2010]
- Assenmacher, Walter.
- [Place of publication not identified] : De Gruyter, 2010.
- Description
- Book — 1 online resource.
- Summary
-
- Front Matter
- Kapitel 1 Realität, Theorie und Modell
- Kapitel 2 Stochastisches, statistisches und ökonometrisches Modell
- Kapitel 3 Variablenarten und Klassifikationen ökonometrischer Modelle
- Kapitel 4 Die Datenbasis des ökonometrischen Modells
- Kapitel 5 Identifikation
- Kapitel 6 Statistische Eigenschaften guter Schätzfunktionen
- Kapitel 7 Die Methode der kleinsten Quadrate: Das einfache und das multiple Regressionsmodell
- Kapitel 8 Die Schätzeigenschaften der Methode der kleinsten Quadrate, Varianz der Schätzfunktionen und Residualvarianz
- Kapitel 9 Bestimmtheitsmaß, Signifikanztests und Konfidenzintervalle für Regressionskoeffizienten
- Kapitel 10 Normalverteilte Störvariablen und die Maximum Likelihood Methode
- Kapitel 11 Multikollinearität
- Kapitel 12 Autocorrelation und Heteroskedastizität
- Kapitel 13 Univariate Zeitreihenmodelle
- Kapitel 14 Parameterschätzungen dynamischer Modellgleichungen
- Kapitel 15 Kointegration und vektorautoregressive Modelle
- Kapitel 16 Qualitative Einflüsse: Die Verwendung von (0,1)-Regressoren
- Kapitel 17 Schätzverfahren für identifizierbare Modellgleichungen
- Kapitel 18 Schätzverfahren für überidentifizierte Modellgleichungen
- Kapitel 19 Simultane Schätzungen der Modellkoeffizienten
- Kapitel 20 Prognosen
- Back Matter
19. Basic econometrics [2009]
- Gujarati, Damodar N.
- 5th ed. - Boston : McGraw-Hill Irwin, c2009.
- Description
- Book — xx, 922 p. : ill. ; 26 cm.
- Summary
-
- Part I: Single-Equation Regression Model
- Chapter 1: The Nature of Regression Analysis
- Chapter 2: Two-Variable Regression Analysis: Some Basic Ideas
- Chapter 3: Two Variable Regression Model: The Problem of Estimation
- Chapter 4: Classical Normal Linear Regression Model (CNLRM)
- Chapter 5: Two-Variable Regression: Interval Estimation and Hypothesis Testing
- Chapter 6: Extensions of the Two-Variable Linear Regression Model
- Chapter 7: Multiple Regression Analysis: The Problem of Estimation
- Chapter 8: Multiple Regression Analysis: The Problem of Inference
- Chapter 9: Dummy Variable Regression Models Part II: Relaxing the Assumptions of the Classical Model
- Chapter 10: Multicollinearity: What happens if the Regressor are Correlated
- Chapter 11: Heteroscedasticity: What Happens if the Error Variance is Nonconstant?
- Chapter 12: Autocorrelation: What Happens if the Error Terms are Correlated
- Chapter 13: Econometric Modeling: Model Specification and Diagnostic Testing Part III: Topics in Econometrics
- Chapter 14: Nonlinear Regression Models
- Chapter 15: Qualitative Response Regression Models
- Chapter 16: Panel Data Regression Models
- Chapter 17: Dynamic Econometric Model: Autoregressive and Distributed-Lag Models. Part IV: Simultaneous-Equation Models
- Chapter 18: Simultaneous-Equation Models.
- Chapter 19: The Identification Problem.
- Chapter 20: Simultaneous-Equation Methods.
- Chapter 21: Time Series Econometrics: Some Basic Concepts
- Chapter 22: Time Series Econometrics: Forecasting Appendix A: Review of Some Statistical Concepts Appendix B: Rudiments of Matrix Algebra Appendix C: The Matrix Approach to Linear Regression Model Appendix D: Statistical Tables Appendix E: Computer Output of EViews, MINITAB, Excel, and STATA Appendix F: Economic Data on the World Wide Web.
- (source: Nielsen Book Data)
- Part I: Single-Equation Regression Model 1: The Nature of Regression Analysis 2: Two-Variable Regression Analysis: Some Basic Ideas 3: Two Variable Regression Model: The Problem of Estimation 4: Classical Normal Linear Regression Model (CNLRM) 5: Two-Variable Regression: Interval Estimation and Hypothesis Testing 6: Extensions of the Two-Variable Linear Regression Model 7: Multiple Regression Analysis: The Problem of Estimation 8: Multiple Regression Analysis: The Problem of Inference 9: Dummy Variable Regression Models Part II: Relaxing the Assumptions of the Classical Model 10: Multicollinearity: What happens if the Regressor are Correlated 11: Heteroscedasticity: What Happens if the Error Variance is Nonconstant? 12: Autocorrelation: What Happens if the Error Terms are Correlated
- Chapter 13: Econometric Modeling: Model Specification and Diagnostic Testing Part III: Topics in Econometrics 14: Nonlinear Regression Models 15: Qualitative Response Regression Models 16: Panel Data Regression Models 17: Dynamic Econometric Model: Autoregressive and Distributed-Lag Models. Part IV: Simultaneous-Equation Models 18: Simultaneous-Equation Models. 19: The Identification Problem. 20: Simultaneous-Equation Methods. 21: Time Series Econometrics: Some Basic Concepts 22: Time Series Econometrics: Forecasting Appendix A: Review of Some Statistical Concepts Appendix B: Rudiments of Matrix Algebra Appendix C: The Matrix Approach to Linear Regression Model Appendix D: Statistical Tables Appendix E: Computer Output of EViews, MINITAB, Excel, and STATA Appendix F: Economic Data on the World Wide Web.
- (source: Nielsen Book Data)
- Online
Law Library (Crown)
Law Library (Crown) | Status |
---|---|
Basement | Request (opens in new tab) |
HB139 .G84 2009 | CHECKEDOUT |
HB139 .G84 2009 | CHECKEDOUT |
HB139 .G84 2009 | Unknown |
20. Econometric theory and methods [2009]
- Davidson, Russell.
- International ed. - New York : Oxford University Press, 2009.
- Description
- Book — xviii, 750 p. : ill. ; 24 cm.
- Summary
-
Econometric Theory and Methods International Edition provides a unified treatment of modern econometric theory and practical econometric methods. The geometrical approach to least squares is emphasized, as is the method of moments, which is used to motivate a wide variety of estimators and tests. Simulation methods, including the bootstrap, are introduced early and used extensively. The book deals with a large number of modern topics. In addition to bootstrap and Monte Carlo tests, these include sandwich covariance matrix estimators, artificial regressions, estimating functions and the generalized method of moments, indirect inference, and kernel estimation. Every chapter incorporates numerous exercises, some theoretical, some empirical, and many involving simulation.
(source: Nielsen Book Data)
- Online
Articles+
Journal articles, e-books, & other e-resources
Guides
Course- and topic-based guides to collections, tools, and services.