1 - 20
Next
- Hinsen, Konrad, author.
- Second edition - Bristol [England] (Temple Circus, Temple Way, Bristol BS1 6HG, UK) : IOP Publishing, [2020]
- Description
- Book — 1 online resource (various pagings) : illustrations (some color)
- Summary
-
- 1. What is computation?
- 1.1. Defining computation
- 1.2. The roles of computation in scientific research
- 1.3. Analog computing
- 1.4. Further reading
- 2. Computation in science
- 2.1. Traditional science : celestial mechanics
- 2.2. Scientific models and computation
- 2.3. Computation at the interface between observations and models
- 2.4. Computation for developing insight
- 2.5. The impact of computing on science
- 2.6. Further reading
- 3. Formalizing computation
- 3.1. From manual computation to rewriting rules
- 3.2. From computing machines to automata theory
- 3.3. Computability
- 3.4. Restricted models of computation
- 3.5. Computational complexity
- 3.6. Computing with numbers
- 3.7. Further reading
- 4. Automating computation
- 4.1. Computer architectures
- 4.2. Programming languages
- 4.3. Observing program execution
- 4.4. Software engineering
- 4.5. Further reading
- 5. Taming complexity
- 5.1. Chaos and complexity in computation
- 5.2. Verification, validation, and testing
- 5.3. Abstraction
- 5.4. Managing state
- 5.5. Incidental complexity and technical debt
- 5.6. Further reading
- 6. Computational reproducibility
- 6.1. Reproducibility : a core value of science
- 6.2. Repeating, reproducing, replicating
- 6.3. The role of computation in the reproducibility crisis
- 6.4. Non-reproducible determinism
- 6.5. Staged computation
- 6.6. Replicability, robustness, and reuse
- 6.7. Managing software evolution
- 6.8. Best practices for reproducible and replicable computational science
- 6.9. Further reading
- 7. Outlook : scientific knowledge in the digital age
- 7.1. The scientific record goes digital
- 7.2. Procedural knowledge turns into software
- 7.3. Machine learning : the fusion of factual and procedural knowledge
- 7.4. The time scales of scientific progress and computing
- 7.5. The industrialization of science
- 7.6. Preparing the future
- 7.7. Further reading
- Simpkins, Stacy, author.
- [Berkeley, CA] : Apress, 2016. New York, NY : Distributed to the Book trade worldwide by Springer
- Description
- Book — 1 online resource (xxiv, 488 pages) : illustrations (some color)
- Summary
-
- Chapter 1: Operating systems and software
- Chapter 2: Hyper-V vs VMware
- Chapter 3: Creating Your First Domain
- Chapter 4: Active Directory
- Chapter 5: Domain Name System (DNS)
- Chapter 6: Certificate Authority
- Chapter 7: Group Policy
- Chapter 8: Joining the Machines to the Domain
- Chapter 9: Installing SQL server
- Chapter 10: Installing SharePoint
- Chapter 11: Installing Dev Tools
- Chapter 12: Troubleshooting
- Chapter 13: Finishing touches.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Lona, Liliane Maria Ferrareso, author.
- Cham, Switzerland : Springer, 2018.
- Description
- Book — 1 online resource (xvii, 173 pages) : illustrations (some color) Digital: text file.PDF.
- Summary
-
- 1. Introduction
- 1.1. The importance of Modelling and Simulation
- 1.2. Important Concepts
- 1.3. Structure of the book
- 2. The Recipe to build a mathematical model
- 2.1. Three fundamental concepts used for modeling
- 2.2. The recipe for the development of a model
- 2.3. Proposed problems
- 3. Lumped-parameters models
- 3.1. Some introductory examples
- 3.2. Some concepts about convective heat exchange
- 3.3. Some concepts about chemical kinetics and reactors
- 3.4. Proposed problems
- 4. Distributed-parameters models
- 4.1. Some introductory examples
- 4.2. Concepts about mas s and energy diffusion
- 4.3. Variations in two and three dimensions
- 4.4. Proposed problems
- 5. Solving Algebraic Eq uations Systems
- 5.1. Problems involving Linear Algebraic Equations
- 5.2. Problems involving Non-Linear Algebraic Equations
- 5.3. Numerical method for Linear and Non-Linear Equations Systems
- 5.4. Proposed problems
- 6. Solving Ordinary Differential Equations Systems
- 6.1. Concepts about Runge-Kutta Family
- 6.2. Different approaches to solve Ordinary Differential Equations using Excel (R)
- 6.3. Propos ed problems
- 7. Solving Partial Differential Equations Systems &n bsp--
- 7.1. Concepts about Finite Difference Method
- 7.2. Reducing a PDE system in an algebraic equation system
- 7.3. Reducing a PDE system in an ODE system
- 7.3. Proposed problems
- 8. Conclusions
- 8.1. Intro duction
- 8.2. Special Scenarios
- 8.3. Main Conclusions and tips
- 8.4. Proposed problems.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- PMBS (Workshop) (5th : 2014 : New Orleans, La.)
- Cham : Springer, 2015.
- Description
- Book — 1 online resource (xii, 276 pages) : illustrations Digital: text file; PDF.
- Summary
-
- Section A. Performance benchmarking and optimization ; Algebraic multigrid on a dragonfly network : first experiences on a Cray XC30 / Hormozd Gahvari, William Gropp, Kirk E. Jordan, Martin Schulz, and Ulrike Meier Yang
- Performance evaluation of scientific applications on POWER8 / Andrew V. Adinetz, Paul F. Baumeister, Hans Böttiger, Thorsten Hater, Thilo Maurer, Dirk Pleiter, Wolfram Schenck, and Sebastiano Fabio Schifano
- SPEC ACCEL : a standard application suite for measuring hardware accelerator performance / Guido Juckeland, William Brantley, Sunita Chandrasekaran, Barbara Chapman, Shuai Che, Mathew Colgrove, Huiyu Feng, Alexander Grund, Robert Henschel, Wen-Mei W. Hwu, Huian Li, Matthias S. Müller, Wolfgang E. Nagel, Maxim Perminov, Pavel Shelepugin, Kevin Skadron, John Stratton, Alexey Titov, Ke Wang, Matthijs van Waveren, Brian Whitney, Sandra Wienke, Rengan Xu, and Kalyan Kumaran
- A CUDA implementation of the high performance conjugate gradient benchmark / Everett Phillips and Massimiliano Fatica
- Performance analysis of a high-level abstractions-based hydrocode on future computing systems / G.R. Mudalige, I.Z. Reguly, M.B. Giles, A.C. Mallinson, W.P. Gaudin, and J.A. Herdman
- Section B. Performance analysis and prediction ; Insight into application performance using application-dependent characteristics / Waleed Alkohlani, Jeanine Cook, and Nafiul Siddique
- Roofline model toolkit : a practical tool for architectural and program analysis / Yu Jung Lo, Samuel Williams, Brian Van Straalen, Terry J. Ligocki, Matthew J. Cordery, Nicholas J. Wright, Mary W. Hall, and Leonid Oliker
- Modeling stencil computations on modern HPC architectures / Raúl de la Cruz and Mauricio Araya-Polo
- Performance modeling of the HPCG benchmark / Vladimir Marjanović, José Gracia, and Colin W. Glass
- On the performance prediction of BLAS-based tensor contractions / Elmar Peise, Diego Fabregat-Traver, and Paolo Bientinesi
- Section C. Power, energy and checkpointing ; Assessing general-purpose algorithms to cope with fail-stop and silent errors / Anne Benoit, Aurélien Cavelan, Yves Robert, and Hongyang Sun
- A case for epidemic fault detection and group membership in HPC storage systems / Shane Snyder, Philip Carns, Jonathan Jenkins, Kevin Harms, Robert Ross, Misbah Mubarak, and Christopher Carothers
- Analysis of the tradeoffs between energy and run time for multilevel checkpointing / Prasanna Balaprakash, Leonardo A. Bautista Gomez, Mohamed-Slim Bouguerra, Stefan M. Wild, Franck Cappello, and Paul D. Hovland
- On the energy proportionality of distributed NoSQL data stores / Balaji Subramaniam and Wu-chun Feng.
- Boy, Guy A., author.
- Switzerland : Springer, 2016.
- Description
- Book — 1 online resource (xii, 212 pages) : illustrations (some color)
- Summary
-
- Preface
- Introduction
- Looking for Tangibility
- Concepts and Tools for Designers
- Innovation
- Complexity
- Flexibility
- Maturity
- Stability
- Sustainability
- Arts
- Conclusion.
- Berea, Anamaria, author.
- Cham, Switzerland : Springer, [2018]
- Description
- Book — 1 online resource Digital: text file.PDF.
- Summary
-
- Introduction.- Complex Systems and Economics of Information.- Heterogeneity in Complex Communication Systems.- A Model of Adaptive and Selective Communication.- Intra versus Interspecies Communication: Boundaries and Advances.- Emergence of Language.- The Future of Communication. Conclusions.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
7. Applied computer science [2016]
- Torbert, Shane, author.
- Second edition. - Switzerland : Springer, 2016.
- Description
- Book — 1 online resource (xii, 279 pages) : illustrations
- Summary
-
- Simulation
- Graphics
- Visualizations
- Efficiency
- Recursion
- Projects
- Modeling, Part I
- Modeling, Part II
- Postscript.
- Intro; Preface; Contents; 1 Simulation; 1.1 Random Walk; 1.2 Air Resistance; 1.3 Lunar Module; 2 Graphics; 2.1 Pixel Mapping; 2.2 Scalable Format; 2.3 Building Software; 3 Visualization; 3.1 Geospatial Population Data; 3.2 Particle Diffusion; 3.3 Approximating π; 4 Efficiency; 4.1 Text and Language; 4.2 Babylonian Method; 4.3 Workload Balance; 5 Recursion; 5.1 Disease Outbreak; 5.2 Runtime Analysis; 5.3 Guessing Games; 6 Projects; 6.1 Sliding Tile Puzzle; 6.2 Anagram Scramble; 6.3 Collision Detection; 7 Modeling, Part I; 7.1 Laws of Motion; 7.2 Collisions in 1-D; 7.3 Collisions in 2-D
- Chen, Po, author.
- Cham : Springer, 2015.
- Description
- Book — 1 online resource (xxxiv, 513 pages) : illustrations (some color) Digital: text file.PDF.
- Summary
-
- Preface
- Introduction
- An elastic Wave Propagation (AWP)
- Green's Functions
- Data Sensitivity Kernels
- Optimization Algorithms
- CVM-S4.26
- Index.
9. Anti-fragile ICT systems [2016]
- Hole, Kjell Jørgen, author.
- Cham : Springer, 2016.
- Description
- Book — 1 online resource (xviii, 151 pages) : illustrations (some color) Digital: text file.PDF.
- Summary
-
- Preface
- Part I: The Concept of Anti-Fragility: 1 Introduction
- 2 Achieving Anti-Fragility
- 3 The Need to Build Trust
- 4 Principles Ensuring Anti-Fragility
- Part II: Anti-Fragility to Downtime: 5 Anti-Fragile Cloud Solutions
- 6 An Anti-Fragile e-Government System
- 7 Anti-Fragile Cloud-Based Telecom Systems
- Part III: Anti-Fragility to Malware: 8 Robustness to Malware Spreading
- 9 Robustness to Malware Reinfections
- 10 Anti-Fragility to Malware Spreading
- Part IV: Anomaly Detection: 11 The Cortical Learning Algorithm
- 12 Detecting Anomalies with the CLA
- Part V: Future Anti-Fragile Systems: 13 Summary and Future Work
- About the Author
- References
- Index.
- Cham : Springer, 2015.
- Description
- Book — 1 online resource (xvi, 169 pages) : color illustrations Digital: text file; PDF.
- Summary
-
- Foreword; Preface; Overview and Goals; Organisation and Features; Target Audiences; Suggested Uses; Acknowledgements; Contents; Contributors; Part I Theory; 1 Data Quality Monitoring of Cloud Databases Based on Data Quality SLAs; 1.1 Introduction and Summary; 1.2 Background; 1.2.1 Data Quality in the Context of Big Data; 1.2.2 Cloud Computing; 1.2.3 Data Quality Monitoring in the Cloud; 1.2.4 The Challenge of Specifying a DQSLA; 1.2.5 The Infrastructure Estimation Problem; 1.3 Proposed Solutions; 1.3.1 Data Quality SLA Formalization; 1.3.2 Examples of Data Quality SLAs.
- 1.3.3 Data Quality-Aware Service Architecture1.4 Future Research Directions; 1.5 Conclusions; References; 2 Role and Importance of Semantic Search in Big Data Governance; 2.1 Introduction; 2.2 Big Data: Promises and Challenges; 2.3 Participatory Design for Big Data; 2.4 Self-Service Discovery; 2.5 Conclusion; References; 3 Multimedia Big Data: Content Analysis and Retrieval; 3.1 Introduction; 3.2 The MapReduce Framework and Multimedia Big Data; 3.2.1 Indexing; 3.2.2 Caveats on Indexing; 3.2.3 Multiple Multimedia Processing; 3.2.4 Additional Work Required?
- 3.3 Deep Learning and Multimedia Data3.4 Conclusions; References; 4 An Overview of Some Theoretical Topological Aspects of Big Data; 4.1 Introduction; 4.2 Representation of Data; 4.3 Homology Theory; 4.3.1 Simplicial Complexes; 4.3.2 Voronoi Diagrams and Delaunay Triangulations; 4.3.3 Vietoris and Čech Complexes; 4.3.4 Graph-Induced Complexes; 4.3.5 Chains; 4.4 Network Theory for Big Data; 4.4.1 Scale-Free, Small-World and Random Networks; 4.5 Conclusions; References; Part II Applications.
- 5 Integrating Twitter Traffic Information with Kalman Filter Models for Public Transportation Vehicle Arrival Time Prediction5.1 Introduction; 5.2 Communication Platform on Twitter; 5.3 Communication for Data Collection on Twitter; 5.4 Event Detection and Analysis: Tweets Relating to Road Incidents; 5.4.1 Twitter Data: Incident Data Set; 5.5 Methodology; 5.5.1 Time Series and Temporal Analysis of Textual Twitter; 5.6 Proposed Refined Kalman Filter (KF) Model-Based System; 5.7 Conclusion; References; 6 Data Science and Big Data Analytics at Career Builder.
- 6.1 Carotene: A Job Title Classification System6.1.1 Occupation Taxonomies; 6.1.2 The Architecture of Carotene; 6.1.2.1 Taxonomy Discovery Using Clustering; 6.1.2.2 Coarse-Level Classification: SOC Major Classifier; 6.1.2.3 Fine-Level Classification: Proximity-Based Classifier; 6.1.3 Experimental Results and Discussion; 6.2 CARBi: A Data Science Ecosystem; 6.2.1 Accessing CB Data and Services Using WebScalding; 6.2.2 ScriptDB: Managing Hadoop Jobs; References; 7 Extraction of Bayesian Networks from Large Unstructured Datasets; 7.1 Introduction; 7.2 Text Mining; 7.2.1 Text Mining Techniques.
- International Workshop on Breast Imaging (13th : 2016 : Malmö, Sweden)
- [Switzerland] : Springer, 2016.
- Description
- Book — 1 online resource (xviii, 688 pages) : illustrations
- Summary
-
- Screening
- CAD
- Mammography, Tomosynthesis, and Breast CT
- Novel Technology
- Density Assessment and Tissue Analysis
- Dose and Classification
- Image Processing, CAD, Breast Density, and New Technology
- Contrast-Enhanced Imaging
- Phase Contrast Breast Imaging
- Simulations and Virtual Clinical Trials.
- Pacific Rim International Conference on Artificial Intelligence (14th : 2016 : Phuket, Thailand)
- Cham : Springer, 2016.
- Description
- Book — 1 online resource (xxii, 821 pages) : illustrations Digital: text file.PDF.
- Summary
-
- AI foundations
- Applications of AI
- Semantic web
- Information retrieval
- Constraint satisfaction
- Multimodal interaction
- Knowledge representation
- Social networks
- Ad-hoc networks
- Algorithms
- Software architecture
- Machine learning
- Smart modeling and simulation.
- Mirjalili, Seyedali, author.
- Cham, Switzerland : Springer, [2019]
- Description
- Book — 1 online resource (xiv, 156 pages) : illustrations (some color) Digital: text file.PDF.
- Summary
-
- Part I: Evolutionary algorithms
- Introduction to Evolutionary Single-objective Optimisation
- Particle Swarm Optimisation
- Ant Colony Optimization
- Genetic Algorithm
- Biogeography-Based Optimization
- Part II: Evolutionary Neural Networks
- Evolutionary Feedforward Neural Networks
- Evolutionary Multi-Layer Perceptron
- Evolutionary Radial Basis Function Networks
- Evolutionary Deep Neural Networks.
(source: Nielsen Book Data)
- Lee, Eun Young, author.
- Cham, Switzerland : Springer, [2019]
- Description
- Book — 1 online resource Digital: text file.PDF.
- Summary
-
- Introduction.- Total Subsidence Analysis.- Tectonic Subsidence Analysis.- Thermal Subsidence Analysis.- Subsidence Visualization with BasinVis 1.5.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Nagy, Ivan.
- Cham : Springer, 2017.
- Description
- Book — 1 online resource (116 pages) Digital: text file.PDF.
- Summary
-
- 1 Introduction 71.1 On dynamic mixtures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71.2 General conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 Basic Models 132.1 Regression model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132.1.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142.1.2 Point estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.1.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152.2 Categorical model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 162.2.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.2 Point estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172.2.3 Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3 State-space model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182.3.1 State estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183 Statistical Analysis of Dynamic Mixtures 213.1 Dynamic mixture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213.2 Unified approach to mixture estimation . . . . . . . . . . . . . . . . . . . . . . . 223.2.1 The component part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223.2.2 The pointer part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233.2.3 Main subtasks of mixture estimation . . . . . . . . . . . . . . . . . . . . . 233.2.4 General algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3 Mixture prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 253.3.1 Pointer prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263.3.2 Data prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284 Dynamic Mixture Estimation 294.1 Normal regression components . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294.1.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304.1.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.1.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.2 Categorical components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.2.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354.2.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364.2.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374.3 State-space components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 384.3.1 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394.3.2 Simple program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404.3.3 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425 Program Codes 435.1 Main program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435.1.1 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455.2 Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2.1 Initialization of estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 475.2.2 Computation of proximities . . . . . . . . . . . . . . . . . . . . . . . . . . 495.2.3 Update of component statistics . . . . . . . . . . . . . . . . . . . . . . . . 525.3 Collection of programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546 Experiments 556.1 Mixture with regression components . . . . . . . . . . . . . . . . . . . . . . . . . 566.1.1 Well separated components . . . . . . . . . . . . . . . . . . . . . . . . . . 576.1.2 Weak components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 646.1.3 Reduced number of components . . . . . . . . . . . . . . . . . . . . . . . 646.1.4 High dimensional output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64<6.1.5 Big noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 656.2 Mixture with categorical components . . . . . . . . . . . . . . . . . . . . . . . . . 696.3 Mixture with state-space components . . . . . . . . . . . . . . . . . . . . . . . . . 756.4 Case studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 756.4.1 Static normal components . . . . . . . . . . . . . . . . . . . . . . . . . . . 796.4.2 Dynamic normal components . . . . . . . . . . . . . . . . . . . . . . . . . 807 Appendix A (supporting notions) 877.1 Useful matrix formulas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.2 Matrix trace . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 877.3 Dirac and Kronecker functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 887.4 Gamma and beta functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 897.5 The Bayes rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 907.6 The chain rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.7 The natural conditions of control . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.8 Conjugate Dirichlet distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 917.8.1 The normalization constant of Dirichlet distribution . . . . . . . . . . . . 927.8.2 Statistics update with the conjugate Dirichlet distribution . . . . . . . . . 927.8.3 The parameter point estimate of the categorical model . . . . . . . . . . . 937.8.4 Data prediction with Dirichlet distribution . . . . . . . . . . . . . . . . . 947.9 Conjugate Gauss-inverse-Wishart distribution . . . . . . . . . . . . . . . . . . . 947.9.1 Statistics update for the normal regression model . . . . . . . . . . . . . . 947.9.2 The parameter point estimate of the regression model . . . . . . . . . . . 957.9.3 The proximity evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 968 Appendix B (supporting programs) 978.1 Simulation programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 978.1.1 The simulation of pointer values . . . . . . . . . . . . . . . . . . . . . . . 978.1.2 The simulation of mixture with regression components . . . . . . . . . . . 988.1.3 The simulation of mixture with discrete components . . . . . . . . . . . . 998.1.4 The simulation of mixture with state-space components . . . . . . . . . . 1018.2 Supporting subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038.2.1 Scilab start settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1038.2.2 The point estimation of a normal regression model . . . . . . . . . . . . . 1038.2.3 The value of a normal multivariate distribution . . . . . . . . . . . . . . . 1048.2.4 Discrete regression vector coding . . . . . . . . . . . . . . . . . . . . . . . 1058.2.5 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1068.2.6 Matrix upper-lower factorization . . . . . . . . . . . . . . . . . . . . . . . 1078.2.7 Transition table normalization . . . . . . . . . . . . . . . . . . . . . . . . 1088.2.8 The approximation of normal pdfs by a single pdf . . . . . . . . . . . . . 108.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- Şen, Zekâi, author.
- Second edition. - [Cham] : Springer, 2016.
- Description
- Book — 1 online resource (424 pages) Digital: text file.PDF.
- Summary
-
- Introduction.- Sampling and Deterministic Modeling Methods.- Temporal and Point Uncertainty Modeling.- Classical Spatial Variation Models in Earth sciences.- Spatial Dependence Measures.- Spatial Modeling.- Spatial Simulation.- Index.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- New York : Springer, 2016.
- Description
- Book — 1 online resource (xxxiv, 469 pages) : illustrations (some color) Digital: text file.PDF.
- Summary
-
- Chapter 1 The Influence of Microstructure on Neural Tissue Mechanics
- Chapter 2 Modeling a Collagenous Tissues Using Distributed Fiber Orientations
- Chapter 3 Emergent Behaviors in Cell Mechanics
- Chapter 4 Histomechanical Modeling of the Wall of Abdominal Aortic Aneurysm
- Chapter 5 The Biomechanics of Fat: From Tissue to a Cell Scale
- Chapter 6 Glaucoma and Structure-Based Mechanics of the Lamina Cribrosa at Multiple Scales
- Chapter 7 From Stress-Strain Relations to Formulation of Growth and Remodeling Theories: A Historical Reflection on Microstructurally-Motivated Constitutive Relations
- Chapter 8 Relationship Between Structure and Mechanics for Membranous Tissues
- Chapter 9 Structure-Function Relations in the Coronary Vasculature
- Chapter 10 Biomechanical Basis of Myocardium/Vessel Interaction: Implications for Patho-Physiology and Therapy
- Chapter 11 Microstructure-Based Constitutive Models for Coronary Artery Adventitia
- Chapter 12 Structural-Based Models of Ventricular Myocardium
- Chapter 13 Structure-Based Constitutive Model of Coronary Media
- Chapter 14 Biomechanics of the Cornea and Sclera
- Chapter 15 Mechanical Modeling of Skin
- Chapter 16 Undesirable Anisotropy in a Discrete Fiber Bundle Model of Fibrous Tissues
- Chapter 17 Structural Models as Applied to Engineered Tissue Scaffolds
- Chapter 18 Finite Element Implementation of Structural Models
- Chapter 19 A Microvascular Model in Skeletal Muscle Fascia
- Chapter 20 Network Approaches to the Mechanical Failure of Soft Tissues: Implications for Disease and Tissue Engineering.
- Sidebotham, George William, author.
- Cham : Springer, 2015.
- Description
- Book — 1 online resource (xviii, 516 pages) : illustrations (some color) Digital: text file; PDF.
- Summary
-
- Part I Modes of Heat Transfer.- Thermal Circuits.- Lumped Capacity Systems and Overall Heat Transfer Coefficients.- Modes of Heat Transfer.- Part II Transient Conduction (with Convective/Radiative.- Boundary Conditions).- 2-Node Systems.- Multinode Systems.- Part III Steady-State Conduction (with Convective/Radiative.- Boundary Conditions).- Nusselt Number Correlations.- Heat Transfer Fins.- Steady-State Conduction.- Part IV Heat Exchangers.- Internal Flow Models.- Heat Exchangers.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
19. Multiphysics in Porous Materials [2018]
- Liu, Zhen, Ph. D., author.
- Cham, Switzerland : Springer, [2018]
- Description
- Book — 1 online resource Digital: text file.PDF.
- Summary
-
- Part 1 Introduction
- Chapter 1 History and Future
- Chapter 2 What is Multiphysics
- Chapter 3 How to Do Multiphysics
- Chapter 4 Multiphysics in Porous Materials
- Chapter 5 How to Use this Book
- Part 2 Mathematical Background
- Chapter 6 Tensor and Field
- Chapter 7 Tensor Analysis
- Chapter 8 Index Notation and Tensor Notation
- Chapter 9 Partial Differential Equations
- Chapter 10 Numerical Solution of PDEs
- Part 3 Monolithic Physics
- Chapter 11 Thermo: Heat Transfer
- Chapter 12 Hydro: Pore Water Movement
- Chapter 13 Concentrato: Transport of Dispersed Mass
- Chapter 14 Mechano: Stress and Strain
- Chapter 15 Dyno: Dynamics
- Chapter 16 Chemico: Chemical Reaction
- Chapter 17 Electro: Electrostatics
- Chapter 18 Magneto: Magnetostatics
- Part 4 Multiphysics
- Chapter 19 Thermomechanics: Non-Isothermal Mechanics
- Chapter 20 Hydromechanics: Poroelasticity as a Simple Case
- Chapter 21 Thermohydromechanics
- Chapter 22 Electrokinetics
- Chapter 23 Electromagnetics
- Chapter 24 Fluid Dynamics
- Chapter 25 Hydrodynomechanics: Fluid-Structure Interaction
- Chapter 26 Thermoelectromagnetics
- Chapter 27 Electromagnetomechanics
- Part 5 Implementation Methods
- Chapter 28 Finite Difference Method
- Chapter 29 Finite Volume Method
- Chapter 30 Finite Element MethodReferencesIndex.
- (source: Nielsen Book Data)
(source: Nielsen Book Data)
- International Conference on Simulation and Modeling Methodologies, Technologies and Applications (4th : 2014 : Vienna, Austria)
- Cham : Springer, [2015]
- Description
- Book — 1 online resource (xvi, 352 pages) : illustrations (some color) Digital: text file; PDF.
- Summary
-
- Front Velocity Modeling Approach to Column Chromatographic Characterization and Evaluation of Ketamine Enantiomers Separation with Simulated Moving Bed
- Modeling Hybrid Systems with Petri Nets
- Automatic Tuning of Computational Models
- Enhanced Interior Gateway Routing Protocol with IPv4 and IPv6 Support for OMNeT++
- Simulating LTE/LTE-advanced Networks with SimuLTE
- Sensitivity Estimation using Likelihood Ratio Method with Fixed-sample-Path Principle
- A System Dynamics Simulator for Decision Support in Risk-based IT Outsourcing Capabilities Management
- Analysis of Fractional-order Point Reactor Kinetics Model with Adiabatic Temperature Feedback for Nuclear Reactor with Subdiffusive Neutron Transport
- Analysis of Model Predictive Control for Fractional-order System
- CFD Modeling of a Mixed Mode Boosted GDI Engine and Performance Optimization for the Avoidance of Knocking
- Real-time Radar, Target and Environment Simulator
- Computationally-efficient EM-simulation-Driven Multi-objective Design of Compact Microwave Structures
- Simulation-based Optimization in Design-under-uncertainty Problems through Iterative Development of Metamodels in Augmented Design/random Variable Space
- Social Aggravation Estimation to Seismic Hazard Using Classical Fuzzy Methods.
Articles+
Journal articles, e-books, & other e-resources
Guides
Course- and topic-based guides to collections, tools, and services.