Cpalka, Krzysztof, Zalasinski, Marcin, and Rutkowski, Leszek
Applied Soft Computing, vol. 43, pp. 47-56, 2016
Subjects
Computer Science - Computer Vision and Pattern Recognition, Computer Science - Artificial Intelligence, and Computer Science - Human-Computer Interaction
Abstract
Identity verification based on authenticity assessment of a handwritten signature is an important issue in biometrics. There are many effective methods for signature verification taking into account dynamics of a signing process. Methods based on partitioning take a very important place among them. In this paper we propose a new approach to signature partitioning. Its most important feature is the possibility of selecting and processing of hybrid partitions in order to increase a precision of the test signature analysis. Partitions are formed by a combination of vertical and horizontal sections of the signature. Vertical sections correspond to the initial, middle, and final time moments of the signing process. In turn, horizontal sections correspond to the signature areas associated with high and low pen velocity and high and low pen pressure on the surface of a graphics tablet. Our previous research on vertical and horizontal sections of the dynamic signature (created independently) led us to develop the algorithm presented in this paper. Selection of sections, among others, allows us to define the stability of the signing process in the partitions, promoting signature areas of greater stability (and vice versa). In the test of the proposed method two databases were used: public MCYT-100 and paid BioSecure. Comment: 34 pages, 7 figures
Bartczuk Łukasz, Przybył Andrzej, and Cpałka Krzysztof
International Journal of Applied Mathematics and Computer Science, Vol 26, Iss 3, Pp 603-621 (2016)
Subjects
nonlinear modelling, dynamic systems, fuzzy systems, interpretability of fuzzy systems, evolutionary algorithms, Mathematics, QA1-939, Electronic computers. Computer science, and QA75.5-76.95
Abstract
For many practical weakly nonlinear systems we have their approximated linear model. Its parameters are known or can be determined by one of typical identification procedures. The model obtained using these methods well describes the main features of the system’s dynamics. However, usually it has a low accuracy, which can be a result of the omission of many secondary phenomena in its description. In this paper we propose a new approach to the modelling of weakly nonlinear dynamic systems. In this approach we assume that the model of the weakly nonlinear system is composed of two parts: a linear term and a separate nonlinear correction term. The elements of the correction term are described by fuzzy rules which are designed in such a way as to minimize the inaccuracy resulting from the use of an approximate linear model. This gives us very rich possibilities for exploring and interpreting the operation of the modelled system. An important advantage of the proposed approach is a set of new interpretability criteria of the knowledge represented by fuzzy rules. Taking them into account in the process of automatic model selection allows us to reach a compromise between the accuracy of modelling and the readability of fuzzy rules.